Skip to main content

The Dental Curing Light

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Light-cured dental resins have revolutionized modern dentistry, and the dental curing light has become an indispensable piece of equipment in almost every dental office. Despite its routine use, the importance of the curing light and how it is used is poorly understood by most operators. Every study that has evaluated curing lights used in dental offices has shown that they often deliver an inadequate light output, and a study published in 2017 reported that 14.5% of dentists did not carry out any regular maintenance on their curing lights. In many offices, the dentists were unaware that their lights were not delivering an adequate light output or that their resins were not achieving the manufacturer’s specifications. This is most likely because the dentist can only test the top surface of the resin. Here the resin appears hard and well cured, yet the bulk of the resin underneath may be undercured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rueggeberg FA. State-of-the-art: dental photocuring – a review. Dent Mater. 2011;27:39–52.

    Article  PubMed  Google Scholar 

  2. Jandt KD, Mills RW. A brief history of LED photopolymerization. Dent Mater. 2013;29:605–17.

    Article  PubMed  Google Scholar 

  3. Price RB, Ferracane JL, Shortall AC. Light-curing units: a review of what we need to know. J Dent Res. 2015;94:1179–86.

    Article  PubMed  Google Scholar 

  4. Santini A, Turner S. General dental practitioners’ knowledge of polymerisation of resin-based composite restorations and light curing unit technology. Br Dent J. 2011;211:E13.

    Article  PubMed  Google Scholar 

  5. McCusker N, Bailey C, Robinson S, Patel N, Sandy JR, Ireland AJ. Dental light curing and its effects on color perception. Am J Orthod Dentofac Orthop. 2012;142:355–63.

    Article  Google Scholar 

  6. Kopperud SE, Rukke HV, Kopperud HM, Bruzell EM. Light curing procedures - performance, knowledge level and safety awareness among dentists. J Dent. 2017;58:67–73.

    Article  PubMed  Google Scholar 

  7. El-Mowafy O, El-Badrawy W, Lewis DW, Shokati B, Soliman O, Kermalli J, et al. Efficacy of halogen photopolymerization units in private dental offices in Toronto. J Can Dent Assoc. 2005;71:587.

    PubMed  Google Scholar 

  8. Ernst CP, Busemann I, Kern T, Willershausen B. Feldtest zur Lichtemissionsleistung von Polymerisationsgeräten in zahnärztlichen Praxen. Dtsch Zahnarztl Z. 2006;61:466–71.

    Google Scholar 

  9. Barghi N, Fischer DE, Pham T. Revisiting the intensity output of curing lights in private dental offices. Compend Contin Educ Dent. 2007;28:380–4. quiz 5-6

    PubMed  Google Scholar 

  10. Hegde V, Jadhav S, Aher GB. A clinical survey of the output intensity of 200 light curing units in dental offices across Maharashtra. J Conserv Dent. 2009;12:105–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Al Shaafi M, Maawadh A, Al QM. Evaluation of light intensity output of QTH and LED curing devices in various governmental health institutions. Oper Dent. 2011;36:356–61.

    Article  PubMed  Google Scholar 

  12. Hao X, Luo M, Wu J, Zhu S. A survey of power density of light-curing units used in private dental offices in Changchun City, China. Lasers Med Sci. 2015;30:493–7.

    Article  PubMed  Google Scholar 

  13. Maghaireh GA, Alzraikat H, Taha NA. Assessing the irradiance delivered from light-curing units in private dental offices in Jordan. J Am Dent Assoc. 2013;144:922–7.

    Article  PubMed  Google Scholar 

  14. AlShaafi MM, Harlow JE, Price HL, Rueggeberg FA, Labrie D, AlQahtani MQ, et al. Emission characteristics and effect of battery drain in "budget" curing lights. Oper Dent. 2016;41:397–408.

    Article  PubMed  Google Scholar 

  15. Vandewalle KS, Roberts HW, Rueggeberg FA. Power distribution across the face of different light guides and its effect on composite surface microhardness. J Esthet Restor Dent. 2008;20:108–17. discussion 18

    Article  PubMed  Google Scholar 

  16. Price RB, Labrie D, Rueggeberg FA, Felix CM. Irradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing units. J Esthet Restor Dent. 2010;22:363–77.

    Article  PubMed  Google Scholar 

  17. Michaud PL, Price RB, Labrie D, Rueggeberg FA, Sullivan B. Localised irradiance distribution found in dental light curing units. J Dent. 2014;42:129–39.

    Article  PubMed  Google Scholar 

  18. Price RB, Labrie D, Rueggeberg FA, Sullivan B, Kostylev I, Fahey J. Correlation between the beam profile from a curing light and the microhardness of four resins. Dent Mater. 2014;30:1345–57.

    Article  PubMed  Google Scholar 

  19. Shimokawa CA, Turbino ML, Harlow JE, Price HL, Price RB. Light output from six battery operated dental curing lights. Mater Sci Eng C Mater Biol Appl. 2016;69:1036–42.

    Article  PubMed  Google Scholar 

  20. Yearn JA. Factors affecting cure of visible light activated composites. Int Dent J. 1985;35:218–25.

    PubMed  Google Scholar 

  21. Price RB, Dérand T, Sedarous M, Andreou P, Loney RW. Effect of distance on the power density from two light guides. J Esthet Dent. 2000;12:320–7.

    Google Scholar 

  22. Price RB, Shortall AC, Palin WM. Contemporary issues in light curing. Oper Dent. 2014;39:4–14.

    Article  PubMed  Google Scholar 

  23. Shortall AC, Price RB, MacKenzie L, Burke FJ. Guidelines for the selection, use, and maintenance of LED light-curing units - part II. Br Dent J. 2016;221:551–4.

    Article  PubMed  Google Scholar 

  24. Shortall AC, Price RB, MacKenzie L, Burke FJ. Guidelines for the selection, use, and maintenance of LED light-curing units - Part 1. Br Dent J. 2016;221:453–60.

    Article  PubMed  Google Scholar 

  25. Rueggeberg F. Contemporary issues in photocuring. Compend Contin Educ Dent Suppl. 1999:S4–15.

    Google Scholar 

  26. Yaman BC, Efes BG, Dorter C, Gomec Y, Erdilek D, Buyukgokcesu S. The effects of halogen and light-emitting diode light curing on the depth of cure and surface microhardness of composite resins. J Conserv Dent. 2011;14:136–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fujibayashi K, Shimaru K, Takahashi N, Kohno A. Newly developed curing unit using blue light-emitting diodes. Dent Jpn. 1998;34:49–53.

    Google Scholar 

  28. Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J. 1999;186:388–91.

    PubMed  Google Scholar 

  29. Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24:901–7.

    Article  PubMed  Google Scholar 

  30. Burtscher P. Ivocerin in comparison to camphorquinone. Ivoclar Vivadent Report, No. 19. July 2013.

    Google Scholar 

  31. Curtis JW Jr, Rueggeberg FA, Lee AJ. Curing efficiency of the turbo tip. Gen Dent. 1995;43:428–33.

    PubMed  Google Scholar 

  32. Rueggeberg FA, Caughman WF, Curtis JW Jr. Effect of light intensity and exposure duration on cure of resin composite. Oper Dent. 1994;19:26–32.

    PubMed  Google Scholar 

  33. Fan PL, Schumacher RM, Azzolin K, Geary R, Eichmiller FC. Curing-light intensity and depth of cure of resin-based composites tested according to international standards. J Am Dent Assoc. 2002;133:429–34.

    Article  PubMed  Google Scholar 

  34. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Degree of conversion and mechanical properties of a BisGMA:TEGDMA composite as a function of the applied radiant exposure. J Biomed Mater Res B Appl Biomater. 2008;84:503–9.

    Article  PubMed  Google Scholar 

  35. Christensen GJ. Ask Dr. Christensen. Dental Economics. 2009;99. http://www.dentaleconomics.com/articles/print/volume-99/issue-9/departments/ask-dr-christensen/ask-dr-christensen.html.

  36. Musanje L, Darvell BW. Polymerization of resin composite restorative materials: exposure reciprocity. Dent Mater. 2003;19:531–41.

    Article  PubMed  Google Scholar 

  37. Leprince JG, Hadis M, Shortall AC, Ferracane JL, Devaux J, Leloup G, et al. Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dent Mater. 2011;27:157–64.

    Article  PubMed  Google Scholar 

  38. Hadis M, Leprince JG, Shortall AC, Devaux J, Leloup G, Palin WM. High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. J Dent. 2011;39:549–57.

    Article  PubMed  Google Scholar 

  39. Wydra JW, Cramer NB, Stansbury JW, Bowman CN. The reciprocity law concerning light dose relationships applied to BisGMA/TEGDMA photopolymers: theoretical analysis and experimental characterization. Dent Mater. 2014;30:605–12.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Selig D, Haenel T, Hausnerova B, Moeginger B, Labrie D, Sullivan B, et al. Examining exposure reciprocity in a resin based composite using high irradiance levels and real-time degree of conversion values. Dent Mater. 2015;31:583–93.

    Article  PubMed  Google Scholar 

  41. Kloosterboer JG, Lijten GFCM. Photopolymers exhibiting a large difference between glass transition and curing temperatures. Polymer. 1990;31:95–101.

    Article  Google Scholar 

  42. Cook WD, Standish PM. Cure of resin based restorative materials. II. White light photopolymerized resins. Aust Dent J. 1983;28:307–11.

    Article  PubMed  Google Scholar 

  43. Burdick JA, Lovestead TM, Anseth KS. Kinetic chain lengths in highly cross-linked networks formed by the photoinitiated polymerization of divinyl monomers: a gel permeation chromatography investigation. Biomacromolecules. 2003;4:149–56.

    Article  PubMed  Google Scholar 

  44. Feng L, Carvalho R, Suh BI. Insufficient cure under the condition of high irradiance and short irradiation time. Dent Mater. 2009;25:283–9.

    Article  PubMed  Google Scholar 

  45. Rueggeberg FA, Cole MA, Looney SW, Vickers A, Swift EJ. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent. 2009;21:43–61.

    Article  PubMed  Google Scholar 

  46. Taubock TT, Feilzer AJ, Buchalla W, Kleverlaan CJ, Krejci I, Attin T. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites. Eur J Oral Sci. 2014;122:293–302.

    Article  PubMed  Google Scholar 

  47. Kanca J 3rd, Suh BI. Pulse activation: reducing resin-based composite contraction stresses at the enamel cavosurface margins. Am J Dent. 1999;12:107–12.

    PubMed  Google Scholar 

  48. Randolph LD, Palin WM, Watts DC, Genet M, Devaux J, Leloup G, et al. The effect of ultra-fast photopolymerisation of experimental composites on shrinkage stress, network formation and pulpal temperature rise. Dent Mater. 2014;30:1280–9.

    Article  PubMed  Google Scholar 

  49. Suh BI, Feng L, Wang Y, Cripe C, Cincione F, de Rjik W. The effect of the pulse-delay cure technique on residual strain in composites. Compendium. 1999;20:4–12.

    PubMed  Google Scholar 

  50. Feng L, Suh BI. A mechanism on why slower polymerization of a dental composite produces lower contraction stress. J Biomed Mater Res B Appl Biomater. 2006;78:63–9.

    Article  PubMed  Google Scholar 

  51. Bouschlicher MR, Rueggeberg FA. Effect of ramped light intensity on polymerization force and conversion in a photoactivated composite. J Esthet Dent. 2000;12:328–39.

    Article  PubMed  Google Scholar 

  52. Chye CH, Yap AU, Laim YC, Soh MS. Post-gel polymerization shrinkage associated with different light curing regimens. Oper Dent. 2005;30:474–80.

    PubMed  Google Scholar 

  53. Lopes LG, Franco EB, Pereira JC, Mondelli RF. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins. J Appl Oral Sci. 2008;16:35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ilie N, Jelen E, Hickel R. Is the soft-start polymerisation concept still relevant for modern curing units? Clin Oral Investig. 2011;15:21–9.

    Article  PubMed  Google Scholar 

  55. Soh MS, Yap AU. Influence of curing modes on crosslink density in polymer structures. J Dent. 2004;32:321–6.

    Article  PubMed  Google Scholar 

  56. Aguiar FH, Oliveira TR, Lima DA, Paulillo LA, Lovadino JR. Effect of light curing modes and ethanol immersion media on the susceptibility of a microhybrid composite resin to staining. J Appl Oral Sci. 2007;15:105–9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. van Dijken JW, Pallesen U. A 7-year randomized prospective study of a one-step self-etching adhesive in non-carious cervical lesions. The effect of curing modes and restorative material. J Dent. 2012;40:1060–7.

    Article  PubMed  Google Scholar 

  58. Rueggeberg FA, Caughman WF, Comer RW. The effect of autoclaving on energy transmission through light-curing tips. J Am Dent Assoc. 1996;127:1183–7.

    Article  PubMed  Google Scholar 

  59. Poulos JG, Styner DL. Curing lights: changes in intensity output with use over time. Gen Dent. 1997;45:70–3.

    PubMed  Google Scholar 

  60. McAndrew R, Lynch CD, Pavli M, Bannon A, Milward P. The effect of disposable infection control barriers and physical damage on the power output of light curing units and light curing tips. Br Dent J. 2011;210:E12.

    Article  PubMed  Google Scholar 

  61. Strydom C. Dental curing lights – maintenance of visible light curing units. SADJ. 2002;57:227–33.

    PubMed  Google Scholar 

  62. Strassler HE, Price RB. Understanding light curing, Part II. Delivering predictable and successful restorations. Dent Today. 2014:1–8; quiz 9.

    Google Scholar 

  63. Leonard DL, Charlton DG, Hilton TJ. Effect of curing-tip diameter on the accuracy of dental radiometers. Oper Dent. 1999;24:31–7.

    PubMed  Google Scholar 

  64. Roberts HW, Vandewalle KS, Berzins DW, Charlton DG. Accuracy of LED and halogen radiometers using different light sources. J Esthet Restor Dent. 2006;18:214–22. discussion 23-4

    Article  PubMed  Google Scholar 

  65. Price RB, Labrie D, Kazmi S, Fahey J, Felix CM. Intra-and inter-brand accuracy of four dental radiometers. Clin Oral Investig. 2012;16:707–17.

    Article  PubMed  Google Scholar 

  66. Marovic D, Matic S, Kelic K, Klaric E, Rakic M, Tarle Z. Time dependent accuracy of dental radiometers. Acta Clin Croat. 2013;52:173–80.

    PubMed  Google Scholar 

  67. Kameyama A, Haruyama A, Asami M, Takahashi T. Effect of emitted wavelength and light guide type on irradiance discrepancies in hand-held dental curing radiometers. Sci World J. 2013;2013:647941.

    Article  Google Scholar 

  68. Shimokawa CA, Harlow JE, Turbino ML, Price RB. Ability of four dental radiometers to measure the light output from nine curing lights. J Dent. 2016;54:48–55.

    Article  PubMed  Google Scholar 

  69. Baroudi K, Silikas N, Watts DC. In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites. Int J Paediatr Dent. 2009;19:48–54.

    Article  PubMed  Google Scholar 

  70. Atai M, Motevasselian F. Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clin Oral Investig. 2009;13:309–16.

    Article  PubMed  Google Scholar 

  71. Leprince J, Devaux J, Mullier T, Vreven J, Leloup G. Pulpal-temperature rise and polymerization efficiency of LED curing lights. Oper Dent. 2010;35:220–30.

    Article  PubMed  Google Scholar 

  72. Matalon S, Slutzky H, Wassersprung N, Goldberg-Slutzky I, Ben-Amar A. Temperature rises beneath resin composite restorations during curing. Am J Dent. 2010;23:223–6.

    PubMed  Google Scholar 

  73. Shortall A, El-Mahy W, Stewardson D, Addison O, Palin W. Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure. J Dent. 2013;41:455–63.

    Article  PubMed  Google Scholar 

  74. Gomes M, DeVito-Moraes A, Francci C, Moraes R, Pereira T, Froes-Salgado N, et al. Temperature increase at the light guide tip of 15 contemporary LED units and thermal variation at the pulpal floor of cavities: an infrared thermographic analysis. Oper Dent. 2013;38:324–33.

    Article  PubMed  Google Scholar 

  75. Mouhat M, Mercer J, Stangvaltaite L, Örtengren U. Light-curing units used in dentistry: factors associated with heat development—potential risk for patients. Clin Oral Investig. 2017;21:1687–96.

    Google Scholar 

  76. Onisor I, Asmussen E, Krejci I. Temperature rise during photo-polymerization for onlay luting. Am J Dent. 2011;24:250–6.

    PubMed  Google Scholar 

  77. Stamatacos C, Harrison JL. The possible ocular hazards of LED dental illumination applications. J Tenn Dent Assoc. 2013;93:25–9. quiz 30-1

    PubMed  Google Scholar 

  78. Bruzell Roll EM, Jacobsen N, Hensten-Pettersen A. Health hazards associated with curing light in the dental clinic. Clin Oral Investig. 2004;8:113–7.

    Article  PubMed  Google Scholar 

  79. Labrie D, Moe J, Price RB, Young ME, Felix CM. Evaluation of ocular hazards from 4 types of curing lights. J Can Dent Assoc. 2011;77:b116.

    PubMed  Google Scholar 

  80. McCusker N, Lee SM, Robinson S, Patel N, Sandy JR, Ireland AJ. Light curing in orthodontics; should we be concerned? Dent Mater. 2013;29:e85–90.

    Article  PubMed  Google Scholar 

  81. Price RB, Labrie D, Bruzell EM, Sliney DH, Strassler HE. The dental curing light: a potential health risk. J Occup Environ Hyg. 2016;13:639–46.

    Article  PubMed  Google Scholar 

  82. Hill EE. Eye safety practices in U.S. dental school restorative clinics, 2006. J Dent Educ. 2006;70:1294–7.

    PubMed  Google Scholar 

  83. American Conference of Governmental Industrial Hygienists (ACGIH): TLVs and BEIs Based on the Documentation for Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. 2015; Cincinnati, OH.

    Google Scholar 

  84. International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm). Health Phys. 1997;73:539–54.

    Google Scholar 

  85. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, Clarke AM, Moon ME. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Investig Ophthalmol Vis Sci. 1978;17:1029–35.

    Google Scholar 

  86. Price RB, McLeod ME, Felix CM. Quantifying light energy delivered to a class I restoration. J Can Dent Assoc. 2010;76:a23.

    PubMed  Google Scholar 

  87. Seth S, Lee CJ, Ayer CD. Effect of instruction on dental students’ ability to light-cure a simulated restoration. J Can Dent Assoc. 2012;78:c123.

    PubMed  Google Scholar 

  88. Federlin M, Price R. Improving light-curing instruction in dental school. J Dent Educ. 2013;77:764–72.

    PubMed  Google Scholar 

  89. Mutluay MM, Rueggeberg FA, Price RB. Effect of using proper light-curing techniques on energy delivered to a class 1 restoration. Quintessence Int. 2014;45:549–56.

    PubMed  Google Scholar 

  90. Price RB, Strassler HE, Price HL, Seth S, Lee CJ. The effectiveness of using a patient simulator to teach light-curing skills. J Am Dent Assoc. 2014;145:32–43.

    Article  PubMed  Google Scholar 

  91. Nitta K. Effect of light guide tip diameter of LED-light curing unit on polymerization of light-cured composites. Dent Mater. 2005;21:217–23.

    Article  PubMed  Google Scholar 

  92. Ash MM, Nelson SJ, Ash MM. Dental anatomy, physiology, and occlusion. 8th ed. Philadelphia: W.B. Saunders; 2003.

    Google Scholar 

  93. Corciolani G, Vichi A, Davidson CL, Ferrari M. The influence of tip geometry and distance on light-curing efficacy. Oper Dent. 2008;33:325–31.

    Article  PubMed  Google Scholar 

  94. Vandewalle KS, Roberts HW, Andrus JL, Dunn WJ. Effect of light dispersion of LED curing lights on resin composite polymerization. J Esthet Restor Dent. 2005;17:244–54. discussion 54-5

    Article  PubMed  Google Scholar 

  95. Xu X, Sandras DA, Burgess JO. Shear bond strength with increasing light-guide distance from dentin. J Esthet Restor Dent. 2006;18:19–27. discussion 8

    Article  PubMed  Google Scholar 

  96. Price RB, Labrie D, Whalen JM, Felix CM. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011;77:b9.

    PubMed  Google Scholar 

  97. Konerding KL, Heyder M, Kranz S, Guellmar A, Voelpel A, Watts DC, et al. Study of energy transfer by different light curing units into a class III restoration as a function of tilt angle and distance, using a MARC patient simulator (PS). Dent Mater. 2016;32:676–86.

    Article  PubMed  Google Scholar 

  98. Scott BA, Felix CA, Price RB. Effect of disposable infection control barriers on light output from dental curing lights. J Can Dent Assoc. 2004;70:105–10.

    PubMed  Google Scholar 

  99. Coutinho M, Trevizam NC, Takayassu RN, Leme AA, Soares GP. Distance and protective barrier effects on the composite resin degree of conversion. Contemp Clin Dent. 2013;4:152–5.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sword RJ, Do UN, Chang JH, Rueggeberg FA. Effect of curing light barriers and light types on radiant exposure and composite conversion. J Esthet Restor Dent. 2016;28:29–42.

    Article  PubMed  Google Scholar 

  101. Strassler HE. Successful light curing- not as easy as it looks. Oral Health. 2013;103:18–26.

    Google Scholar 

  102. Price RB, Felix CM, Whalen JM. Factors affecting the energy delivered to simulated class I and class V preparations. J Can Dent Assoc. 2010;76:a94.

    Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the valuable contributions of Professor F. Rueggeberg when preparing this text and his contributions to dental education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Price, R.B. (2018). The Dental Curing Light. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics