Skip to main content

Composition of Dental Resin-Based Composites for Direct Restorations

  • Chapter
  • First Online:
Dental Composite Materials for Direct Restorations

Abstract

Ever since the introduction of light-curable resin-based composites in the 1970s, these mixtures of organic and inorganic phases have continuously evolved to meet the increasing requirements of material design and dental practitioners. However, fundamentally, the chemistry of composite phases has not significantly changed, with material design that commonly involves particle dispersion within a resin matrix. Such matrix is typically based on (di)methacrylate chemistry and a camphorquinone system to initiate polymerization upon light activation. The lack of any substantial shift in the use of conventional manufacturing approaches is, in part, testament to the relative success of resin composites as restorative dental filling materials. Current research focuses on strategies that would allow bulk-curing or bioactive and adhesive properties, which may lead to an improved longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Davy KWM, Kalachandra S, Pandain MS, Braden M. Relationship between composite matrix molecular structure and properties. Biomaterials. 1998;19:2007–14.

    Article  PubMed  Google Scholar 

  2. Feng L, Suh BI. Exposure reciprocity law in Photopolymerization of multi-functional acrylates and Methacrylates. Macromol Chem Phys. 2007;208:295–306.

    Article  Google Scholar 

  3. Dickens SH, Stansbury JW, Choi KM, Floyd CJE. Photopolymerization kinetics of methacrylate dental resins. Macromolecules. 2003;36:6043–53.

    Article  Google Scholar 

  4. Hadis M, Leprince JG, Shortall AC, Devaux J, Leloup G, Palin WM. High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. J Dent. 2011;39:549–57.

    Article  PubMed  Google Scholar 

  5. de Godoy Fróes-Salgado NR, Gajewski V, Ornaghi BP, Pfeifer CSC, Meier MM, Xavier TA, Braga RR. Influence of the base and diluent monomer on network characteristics and mechanical properties of neat resin and composite materials. Odontology. 2015;103:160–8.

    Article  Google Scholar 

  6. Boaro LC, Goncalves F, Guimaraes TC, Ferracane JL, Versluis A, Braga RR. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent Mater. 2010;26:1144–50.

    Article  PubMed  Google Scholar 

  7. Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci. 2009;117:68–75.

    Article  PubMed  Google Scholar 

  8. Sevkusic M, Schuster L, Rothmund L, Dettinger K, Maier M, Hickel R, Van Landhuyt KL, Durner J, Hogg C, Reichl FX. The elution and breakdown behavior of constituents from various light-cured composites. Dent Mater. 2014;30:619–31.

    Article  PubMed  Google Scholar 

  9. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998;14:51–6.

    Article  PubMed  Google Scholar 

  10. Polydorou O, König A, Hellwig E, Kümmerer K. Uthethane dimethacrylate: a molecule that may cause confusion in dental research. J Biomed Mater Res B Appl Biomater. 2009;91B:1–4.

    Article  Google Scholar 

  11. Moszner N, Völkel T, Cramer von Clausbruch S, Geiter E, Batliner N, Rheinberger V. Sol-Gel materials, 1. Synthesis and hydrolytic condensation of new cross-linking alkoxysilane methacrylates and light-curing composites based upon the condensates. Macromol Mater Eng. 2002;287:339–47.

    Article  Google Scholar 

  12. Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monatshefte für Chemie. 2004;136:21–45.

    Article  Google Scholar 

  13. Contreras PP, Tyagi P, Agarwal S. Low volume shrinkage of polymers by photopolymerization of 1,1-bis(ethoxycarbonyl)-2-vinylcyclopropanes. Polym Chem. 2015;6:2297–304.

    Article  Google Scholar 

  14. Mahmoud S, El-Embaby A, AbdAllah A. Clinical performance of Ormocer, Nanofilled, and Nanoceramic resin composites in class I and class II restorations: a three-year evaluation. Oper Dent. 2014;39:32–42.

    Article  PubMed  Google Scholar 

  15. Poitevin A, De Munck J, Van Ende A, Suyama Y, Mine A, Peumans M, Van Meerbeek B. Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent Mater. 2013;29:221–30.

    Article  PubMed  Google Scholar 

  16. Van Meerbeek B, Yoshihara K, Yoshida Y, Mine A, De Munck J, Van Landuyt KL. State of the art of self-etch adhesives. Dent Mater. 2011;27:17–28.

    Article  PubMed  Google Scholar 

  17. Moszner N, Salz U, Zimmermann J. Chemical aspects of self-etching enamel-dentin adhesives: a systematic review. Dent Mater. 2005;21:895–910.

    Article  PubMed  Google Scholar 

  18. Hanabusa M, Mine A, Kuboki T, Momoi Y, Van Landuyt KL, Van Meerbeek B, De Munck J. TEM interfacial characterization of an experimental self-adhesive filling material bonded to enamel/dentin. Dent Mater. 2011;27:818–24.

    Article  PubMed  Google Scholar 

  19. Vichi A, Margvelashvili M, Goracci C, Papacchini F, Ferrari M. Bonding and sealing ability of a new self-adhering flowable composite resin in class I restorations. Clin Oral Investig. 2013;17:1497–506.

    Article  PubMed  Google Scholar 

  20. Neumann MG, Miranda WG Jr, Schmitt CC, Rueggeberg FA, Correa IC. Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units. J Dent. 2005;33:525–32.

    Article  PubMed  Google Scholar 

  21. Price RB, Felix CA. Effect of delivering light in specific narrow bandwidths from 394 to 515nm on the micro-hardness of resin composites. Dent Mater. 2009;25:899–908.

    Article  PubMed  Google Scholar 

  22. Albuquerque PPAC, Moreira ADL, Moraes RR, Cavalcante LM, Schneider LFJ. Color stability, conversion, water sorption and solubility of dental composites formulated with different photoinitiator systems. J Dent. 2013;41(Suppl 3):e67–72.

    Article  PubMed  Google Scholar 

  23. Manojlovic D, Dramićanin MD, Lezaja M, Pongprueksa P, Van Meerbeek B, Miletic V. Effect of resin and photoinitiator on color, translucency and color stability of conventional and low-shrinkage model composites. Dent Mater. 2016;32:183–91.

    Article  PubMed  Google Scholar 

  24. Randolph LD, Steinhaus J, Moginger B, Gallez B, Stansbury J, Palin WM, Leloup G, Leprince JG. Photopolymerization of highly filled dimethacrylate-based composites using type I or type II photoinitiators and varying co-monomer ratios. Dent Mater. 2016;32:136–48.

    Article  PubMed  Google Scholar 

  25. Palin WM, Hadis MA, Leprince JG, Leloup G, Boland L, Fleming GJP, Krastl G, Watts DC. Reduced polymerization stress of MAPO-containing resin composites with increased curing speed, degree of conversion and mechanical properties. Dent Mater. 2014;30:507–16.

    Article  PubMed  Google Scholar 

  26. Neumann MG, Schmitt CC, Ferreira GC, Corrêa IC. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dent Mater. 2006;22:576–84.

    Article  PubMed  Google Scholar 

  27. Jockusch S, Koptyug IV, McGarry PF, Sluggett GW, Turro NJ, Watkins DM. A steady-state and picosecond pump-probe investigation of the photophysics of an acyl and a Bis(acyl)phosphine oxide. J Am Chem Soc. 1997;119:11495–501.

    Article  Google Scholar 

  28. Cook WD. Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system. Polymer. 1992;33:600–9.

    Article  Google Scholar 

  29. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32:1586–99.

    Article  PubMed  Google Scholar 

  30. Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37:364–76.

    Article  PubMed  Google Scholar 

  31. Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent Mater. 2009;25:180–7.

    Article  PubMed  Google Scholar 

  32. Scougall-Vilchis RJ, Hotta Y, Hotta M, Idono T, Yamamoto K. Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J. 2009;28:102–12.

    Article  PubMed  Google Scholar 

  33. Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G. A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater. 1992;8:310–9.

    Article  PubMed  Google Scholar 

  34. Goncalves F, Azevedo CL, Ferracane JL, Braga RR. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011;27:520–6.

    Article  PubMed  Google Scholar 

  35. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002;87:642–9.

    Article  PubMed  Google Scholar 

  36. Hadis MA, Tomlins PH, Shortall AC, Palin WM. Dynamic monitoring of refractive index change through photoactive resins. Dent Mater. 2010;26:1106–12.

    Article  PubMed  Google Scholar 

  37. Arikawa H, Kanie T, Fujii K, Takahashi H, Ban S. Effect of filler properties in composite resins on light transmittance characteristics and color. Dent Mater J. 2007;26:38–44.

    Article  PubMed  Google Scholar 

  38. Lim YK, Lee YK, Lim BS, Rhee SH, Yang HC. Influence of filler distribution on the color parameters of experimental resin composites. Dent Mater. 2008;24:67–73.

    Article  PubMed  Google Scholar 

  39. Li R, Ma X, Liang S, Sa Y, Jiang T, Wang Y. Optical properties of enamel and translucent composites by diffuse reflectance measurements. J Dent. 2012;40(Suppl 1):e40–7.

    Article  PubMed  Google Scholar 

  40. ISO 4049:2009. Dentistry–Polymer-based restorative materials. 4th ed; 2009. p. 28.

    Google Scholar 

  41. Ergucu Z, Turkun LS, Onem E, Guneri P. Comparative radiopacity of six flowable resin composites. Oper Dent. 2010;35:436–40.

    Article  PubMed  Google Scholar 

  42. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J. 2012;31:47–53.

    Article  PubMed  Google Scholar 

  43. Bocalon ACE, Mita D, Narumyia I, Shouha P, Xavier TA, Braga RR. Replacement of glass particles by multidirectional short glass fibers in experimental composites: effects on degree of conversion, mechanical properties and polymerization shrinkage. Dent Mater. 2016;32:e204–10.

    Article  PubMed  Google Scholar 

  44. Garoushi S, Sailynoja E, Vallittu PK, Lassila L. Physical properties and depth of cure of a new short fiber reinforced composite. Dent Mater. 2013;29:835–41.

    Article  PubMed  Google Scholar 

  45. Fu SY, Lauke B, Mäder E, Yue CY, Hu X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos A: Appl Sci Manuf. 2000;31:1117–25.

    Article  Google Scholar 

  46. van Dijken JW, Sunnegardh-Gronberg K. Fiber-reinforced packable resin composites in class II cavities. J Dent. 2006;34:763–9.

    Article  PubMed  Google Scholar 

  47. Manhart J, Kunzelmann KH, Chen HY, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dent Mater. 2000;16:33–40.

    Article  PubMed  Google Scholar 

  48. Angeletakis C, Nguyen MDS, Kobashigawa AI. Prepolymerized filler in dental restorative composite. 2005. Google Patents.

    Google Scholar 

  49. Darvell, B.W. Chapter 6 – Resin restorative materials. In: Materials science for dentistry. 9th ed. Sawston, Cambridge: Woodhead; 2009. p. 128–62. https://www.elsevier.com/books/materials-science-fordentistry/ darvell/978-1-84569-529-3.

  50. Arksornnukit M, Takahashi H, Nishiyama N. Effects of silane coupling agent amount on mechanical properties and hydrolytic durability of composite resin after hot water storage. Dent Mater J. 2004;23:31–6.

    Article  PubMed  Google Scholar 

  51. Antonucci JM, Dickens SH, Fowler BO, Xu HHK, McDonough WG. Chemistry of silanes: interfaces in dental polymers and composites. J Res Natl Inst Stand Technol. 2005;110:541–58.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karabela MM, Sideridou ID. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent Mater. 2008;24:1631–9.

    Article  PubMed  Google Scholar 

  53. Nihei T. Dental applications for silane coupling agents. J Oral Sci. 2016;58:151–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

L.D. Randolph is a FRIA (F.R.S-FNRS) scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc D. Randolph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Randolph, L.D., Palin, W.M., Leprince, J.G. (2018). Composition of Dental Resin-Based Composites for Direct Restorations. In: Miletic, V. (eds) Dental Composite Materials for Direct Restorations. Springer, Cham. https://doi.org/10.1007/978-3-319-60961-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60961-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60960-7

  • Online ISBN: 978-3-319-60961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics