Skip to main content

Variability Management and Assessment for User Interface Design

  • Chapter
  • First Online:
Human Centered Software Product Lines

Abstract

User Interface (UI) design remains an open, wicked, complex and multi-faceted problem, owing to the ever increasing variability of design options resulting from multiple contexts of use, i.e., various end-users, heterogeneous devices and computing platforms, as well as their varying environments. Designing multiple UIs for multiple contexts of use inevitably requires an ever growing amount of time and resources that not all organizations are able to afford. Moreover, UI design choices stand on end-users’ needs elicitation, which are recognized to be difficult to evaluate precisely upfront and which require iterative design cycles. All this complex variability should be managed efficiently to maintain time and resources to an acceptable level. To address these challenges, this article proposes a variability management approach integrated into a UI rapid prototyping process, which involves the combination of Model-Driven Engineering, Software Product Lines and Interactive Genetic Algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://balsamiq.com

  2. 2.

    JQueryMobile web framework: https://jquerymobile.com

References

  1. Abrahão S, Iborra E, Vanderdonckt J. Usability evaluation of user interfaces generated with a model-driven architecture tool. In: Maturing usability. London: Springer; 2008. p. 3–32.

    Chapter  Google Scholar 

  2. Acher M, Collet P, Lahire P, France RB. Separation of concerns in feature modeling: support and applications. In: Proceedings of the 11th Conference on Aspect-Oriented Software Development. 2012.

    Google Scholar 

  3. Acher M, Collet P, Lahire P, France RB. Familiar: a domain-specific language for large scale management of feature models. Sci Comput Program. 2013;78(6):657–81.

    Article  Google Scholar 

  4. Barreiros J, Moreira A. Soft constraints in feature models. In: Proceedings of ICSEA 2011: The Sixth International Conference on Software Engineering Advances. IARIA XPS Press; 2011, p. 136–141. ISBN: 978-1-61208-165-6.

    Google Scholar 

  5. Batory D, Azanza M, Saraiva J. The objects and arrows of computational design. In: Model driven engineering languages and systems. Berlin: Springer; 2008. p. 1–20.

    Google Scholar 

  6. Benavides D, Martín-Arroyo PT, Cortés AR. Automated reasoning on feature models. In: CAiSE. 2005. p. 491–503.

    Google Scholar 

  7. Benavides D, Segura S, Ruiz-Cortés A. Automated analysis of feature models 20 years later: a literature review. Inf Syst. 2010;35(6):615–36.

    Google Scholar 

  8. Brummermann H, Keunecke M, Schmid K. Variability issues in the evolution of information system ecosystems. In: Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems. 2011.

    Google Scholar 

  9. Bühne S, Lauenroth K, Pohl K. Why is it not sufficient to model requirements variability with feature models. In: Workshop on Automotive Requirements Engineering (AURE04), at RE04. 2004.

    Google Scholar 

  10. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J. A unifying reference framework for multi-target user interfaces. Interact Comput. 2003;15(3):289–308.

    Article  Google Scholar 

  11. do Carmo Machado I, McGregor JD, de Almeida ES. Strategies for testing products in software product lines. ACM SIGSOFT Softw Eng Notes. 2012;37(6):1–8.

    Google Scholar 

  12. Clements P, Northrop L. Software product lines. Boston/London: Addison-Wesley Boston; 2002.

    Google Scholar 

  13. Czarnecki K, Antkiewicz M, Kim CHP, Lau S, Pietroszek K. Model-driven software product lines. In: Companion to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM; 2005. p. 126–27.

    Google Scholar 

  14. Czarnecki K, Helsen S, Eisenecker U. Staged configuration through specialization and multilevel configuration of feature models. Softw Process Improv Practice. 2005;10(2): 143–69.

    Article  Google Scholar 

  15. DIS I. 9241-210: 2010. Ergonomics of human system interaction-part 210: human-centred design for interactive systems. Geneva: International Standardization Organization (ISO); 2009.

    Google Scholar 

  16. Eiben AE, Smith JE. Introduction to evolutionary computing. Berlin/London: Springer; 2003.

    Book  MATH  Google Scholar 

  17. Ensan F, Bagheri E, Gašević D. Evolutionary search-based test generation for software product line feature models. In: Ralyté J, Franch X, Brinkkemper S, Wrycza S, editors. Advanced information systems engineering. Lecture notes in computer science, vol. 7328. Berlin/Heidelberg: Springer; 2012. p. 613–28.

    Google Scholar 

  18. Gabillon Y, Biri N, Otjacques B. Designing multi-context UIs by software product line approach. In: ICHCI’13. 2013.

    Google Scholar 

  19. García JG, Vanderdonckt J, González-Calleros JM. Flowixml: a step towards designing workflow management systems. Int J Web Eng Technol. 2008;4(2):163–82. http://dx.doi.org/10.1504/IJWET.2008.018096

    Article  Google Scholar 

  20. García Frey A, Sottet JS, Vagner A. Ame: an adaptive modelling environment as a collaborative modelling tool. In: Proceedings of the 2014 ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York: ACM; 2014. p. 189–92.

    Google Scholar 

  21. García Frey A, Sottet JS, Vagner A. Towards a multi-stakehoder engineering approach with adaptive modelling environments. In: Proceedings of the 2014 ACM SIGCHI Symposium on Engineering Interactive Computing Systems. New York: ACM; 2014. p. 33–8.

    Google Scholar 

  22. García Frey A, Sottet JS, Vagner A. A multi-viewpoint approach to support collaborative user interface generation. In: 19th IEEE International Conference on Computer Supported Cooperative Work in Design CSCWD. 2015.

    Google Scholar 

  23. Henard C, Papadakis M, Perrouin G, Klein J, Traon YL. Multi-objective test generation for software product lines. In: SPLC. 2013. p. 62–71.

    Google Scholar 

  24. Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Traon YL. Bypassing the combinatorial explosion: using similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Trans Softw Eng. 2014;40(7):650–70.

    Article  Google Scholar 

  25. Johansen MF, Haugen Ø, Fleurey F, Eldegard AG, Syversen T. Generating better partial covering arrays by modeling weights on sub-product lines. In: MoDELS. 2012. p. 269–84.

    Google Scholar 

  26. Kang KC, Lee J, Donohoe P. Feature-oriented project line engineering. IEEE Softw. 2002;19(4):58–65.

    Article  Google Scholar 

  27. López-Jaquero V, Vanderdonckt J, Simarro FM, González P. Towards an extended model of user interface adaptation: the isatine framework. In: Gulliksen J, Harning MB, Palanque PA, van der Veer GC, Wesson J, editors. Engineering Interactive Systems – EIS 2007 Joint Working Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Mar 22–24, 2007. Selected Papers. Lecture notes in computer science, vol. 4940. Springer; 2007. p. 374–92. http://dx.doi.org/10.1007/978-3-540-92698-6_23

  28. Mannion M, Savolainen J, Asikainen T. Viewpoint-oriented variability modeling. In: COMPSAC’09. 2009.

    Google Scholar 

  29. Martinez J, Lopez C, Ulacia E, del Hierro M. Towards a model-driven product line for web systems. In: 5th Model-Driven Web Engineering Workshop MDWE. 2009.

    Google Scholar 

  30. Nielsen J, Landauer TK. A mathematical model of the finding of usability problems. In: Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems. ACM; 1993. p. 206–13.

    Google Scholar 

  31. OMG. IFML – interaction flow modeling language. 2013.

    Google Scholar 

  32. Pleuss A, Botterweck G, Dhungana D. Integrating automated product derivation and individual user interface design. VaMoS. 2010;10:69–76.

    Google Scholar 

  33. Pleuss A, Hauptmann B, Dhungana D, Botterweck G. User interface engineering for software product lines: the dilemma between automation and usability. In: EICS. New York: ACM; 2012. p. 25–34.

    Google Scholar 

  34. Pohl K, Böckle G, Van Der Linden F. Software product line engineering: foundations, principles, and techniques. Berlin: Springer; 2005.

    Book  MATH  Google Scholar 

  35. Rosenmüller M, Siegmund N. Automating the configuration of multi software product lines. In: VaMoS. 2010. p. 123–30.

    Google Scholar 

  36. Sayyad AS, Menzies T, Ammar H. On the value of user preferences in search-based software engineering: a case study in software product lines. In: ICSE. 2013. p. 492–501.

    Google Scholar 

  37. Scapin DL, Bastien JC. Ergonomic criteria for evaluating the ergonomic quality of interactive systems. Behav Inf Technol. 1997;16(4–5):220–31.

    Article  Google Scholar 

  38. Schlee M, Vanderdonckt J. Generative programming of graphical user interfaces. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI’04. New York: ACM; 2004. p. 403–6. http://doi.acm.org/10.1145/989863.989936

    Chapter  Google Scholar 

  39. Shneiderman B. Promoting universal usability with multi-layer interface design. In: Proceedings of the 2003 Conference on Universal Usability, CUU’03. New York: ACM; 2003. p. 1–8. http://doi.acm.org/10.1145/957205.957206

    Google Scholar 

  40. Sottet JS, Vagner A. Genius: generating usable user interfaces. arXiv preprint arXiv:1310.1758; 2013.

    Google Scholar 

  41. Sottet JS, Vagner A. Defining domain specific transformations in human-computer interfaces development. In: 2nd Conference on Model-Driven Engineering for Software Developement. 2014.

    Google Scholar 

  42. Sottet JS, Calvary G, Coutaz J, Favre JM. A model-driven engineering approach for the usability of plastic user interfaces. In: Engineering Interactive Systems. Berlin/New York: Springer; 2008. p. 140–57.

    Chapter  Google Scholar 

  43. Sottet JS, Vagner A, García Frey A. Model transformation configuration and variability management for user interface design. In: International Conference on Model-Driven Engineering and Software Development. Springer International Publishing; 2015. p. 390–404.

    Google Scholar 

  44. Sottet JS, Vagner A, García Frey A. Variability management supporting the model-driven design of user interfaces. In: Modelsward. 2015.

    Google Scholar 

  45. Sumner T, Davies S, Lemke AC, Polson PG. Iterative design of a voice dialog design environment. In: Wixon DR, editor. Posters and Short Talks of the 1992 SIGCHI Conference on Human Factors in Computing Systems, CHI 1992, Monterey, 3–7 May 1992. New York: ACM; 1992. p. 31. http://doi.acm.org/10.1145/1125021.1125050.

    Google Scholar 

  46. Syswerda G. Uniform crossover in genetic algorithms. In: Schaffer JD, editor. Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA). Morgan Kaufmann; 1989, p. 2–9. ISBN: 1-55860-066-3.

    Google Scholar 

  47. Takagi H. Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc IEEE. 2001;89(9):1275–96.

    Article  Google Scholar 

  48. White J, Dougherty B, Schmidt DC, Benavides D. Automated reasoning for multi-step feature model configuration problems. In: Proceedings of the 13th International Software Product Line Conference. 2009.

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the FNR CORE Project MoDEL C12/IS/3977071. The work of Jabier Martinez is funded by the AFR grant agreement 7898764. The work of Alfonso García Frey is partially co-funded by Yotako S.A. and the FNR Luxembourg under the AFR grant agreement 7859308. Special thanks to Alain Vagner for his contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabier Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martinez, J. et al. (2017). Variability Management and Assessment for User Interface Design. In: Sottet, JS., García Frey, A., Vanderdonckt, J. (eds) Human Centered Software Product Lines. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-60947-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60947-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60945-4

  • Online ISBN: 978-3-319-60947-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics