Advertisement

Patient Specific Virtual and Physical Simulation Platform for Surgical Robot Movability Evaluation in Single-Access Robot-Assisted Minimally-Invasive Cardiothoracic Surgery

  • Giuseppe TuriniEmail author
  • Sara Condino
  • Sara Sinceri
  • Izadyar Tamadon
  • Simona Celi
  • Claudio Quaglia
  • Michele Murzi
  • Giorgio Soldani
  • Arianna Menciassi
  • Vincenzo Ferrari
  • Mauro Ferrari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10325)

Abstract

Recently, minimally invasive cardiothoracic surgery (MICS) has grown in popularity thanks to its advantages over conventional surgery and advancements in surgical robotics.

This paper presents a patient-specific virtual surgical simulator for the movability evaluation of single-port MICS robots. This simulator can be used for both the pre-operative planning to rehearse the case before the surgery, and to test the robot in the early stage of development before physical prototypes are built.

A physical simulator is also proposed to test the robot prototype in a tangible environment. Synthetic replicas of the patient organs are able to replicate the mechanical behaviors of biological tissues, allowing the simulation of the physical interactions robot-anatomy.

The preliminary tests of the virtual simulator showed good performance for both the visual and physics processes.

After reviewing the physical simulator, a surgeon provided a positive evaluation of the organ replicas in terms of geometry and mechanical behaviors.

Keywords

Virtual reality Unity game engine Computer-assisted surgery Minimally-invasive surgery Cardiothoracic surgery Robotic surgery Surgical simulation 

Notes

Acknowledgments

The research leading to these results has been supported by the scientific project ValveTech (“Realizzazione di una Valvola Aortica Polimerica di Nuova Concezione ed Impiantabile Tramite Piattaforma Robotica con Tecniche di Chirurgia Mininvasiva” 2016–2018) funded by the Tuscany Region (Italy) through the call FAS SALUTE 2014.

References

  1. 1.
    Baccarin, L.S., Casarin, R.C.V., Lopes-da Silva, J.V., Passeri, L.A.: Analysis of mandibular test specimens used to assess a bone fixation system. Craniomaxillofacial Trauma Reconstr. 8(03), 171–178 (2015)CrossRefGoogle Scholar
  2. 2.
    Bhatt, A.G., Steinberg, J.S.: Robotic-assisted left ventricular lead placement. Card. Electrophysiol. Clin. 7(4), 649–659 (2015)CrossRefGoogle Scholar
  3. 3.
    Bush, B., Nifong, L.W., Alwair, H., Chitwood Jr., W.R.: Video-atlas on robotically assisted mitral valve surgery. Ann. Cardiothorac. Surg. 2(6), 846–848 (2013)Google Scholar
  4. 4.
    Carbone, M., Condino, S., Mattei, L., Forte, P., Ferrari, V., Mosca, F.: Anthropomorphic ultrasound elastography phantoms: Characterization of silicone materials to build breast elastography phantoms. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 492–494. IEEE (2012)Google Scholar
  5. 5.
    Celi, S., Berti, S.: In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading. Med. Image Anal. 18(7), 1157–1168 (2014)CrossRefGoogle Scholar
  6. 6.
    Condino, S., Carbone, M., Ferrari, V., Faggioni, L., Peri, A., Ferrari, M., Mosca, F.: How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int. J. Med. Robot. 7(2), 202–213 (2011)CrossRefGoogle Scholar
  7. 7.
    De Luca, V., Meo, A., Mongelli, A., Vecchio, P., De Paolis, L.T.: Development of a virtual simulator for microanastomosis: new opportunities and challenges. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9769, pp. 65–81. Springer, Cham (2016). doi: 10.1007/978-3-319-40651-0_6 Google Scholar
  8. 8.
    Degani, A., Choset, H., Wolf, A., Zenati, M.A.: Highly articulated robotic probe for minimally invasive surgery. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 4167–4172. IEEE (2006)Google Scholar
  9. 9.
    Folliguet, T.A., Dibie, A., Philippe, F., Larrazet, F., Slama, M.S., Laborde, F.: Robotically-assisted coronary artery bypass grafting. Cardiol. Res. Pract. 2010 (2010)Google Scholar
  10. 10.
    Folliguet, T.A., Laborde, F.: Robotic aortic valve replacement. In: Chitwood Jr., W.R. (ed.) Atlas of Robotic Cardiac Surgery, pp. 265–269. Springer, London (2014)Google Scholar
  11. 11.
    Gong, W., Cai, J., Wang, Z., Chen, A., Ye, X., Li, H., Zhao, Q.: Robot-assisted coronary artery bypass grafting improves short-term outcomes compared with minimally invasive direct coronary artery bypass grafting. J. Thorac. Dis. 8(3), 459–468 (2016)CrossRefGoogle Scholar
  12. 12.
    Iribarne, A., Easterwood, R., Chan, E.Y., Yang, J., Soni, L., Russo, M.J., Smith, C.R., Argenziano, M.: The golden age of minimally invasive cardiothoracic surgery: current and future perspectives. Future Cardiol. 7(3), 333–346 (2011)CrossRefGoogle Scholar
  13. 13.
    Moglia, A., Turini, G., Ferrari, V., Ferrari, M., Mosca, F.: Patient specific surgical simulator for the evaluation of the movability of bimanual robotic arms. Stud. Health Technol. Inf. 163, 379–385 (2011)Google Scholar
  14. 14.
    Neuzil, P., Cerny, S., Kralovec, S., Svanidze, O., Bohuslavek, J., Plasil, P., Jehlicka, P., Holy, F., Petru, J., Kuenzler, R., et al.: Single-site access robot-assisted epicardial mapping with a snake robot: preparation and first clinical experience. J. Robot. Surg. 7(2), 103–111 (2013)CrossRefGoogle Scholar
  15. 15.
    Paci, A., Marcutti, S., Ricci, S., Casadio, M., Vercelli, G.V., Marchiolè, P., Cordone, M.: eBSim: development of a low-cost obstetric simulator. In: Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9769, pp. 101–110. Springer, Cham (2016). doi: 10.1007/978-3-319-40651-0_9 Google Scholar
  16. 16.
    Parchi, P., Condino, S., Carbone, M., Gesi, M., Ferrari, V., Ferrari, M., Lisanti, M.: Total hip replacement simulators with virtual planning and physical replica for surgical training and rehearsal. In: Proceedings of the 12th IASTED International Conference on Biomedical Engineering, BioMed 2016, pp. 97–101 (2016)Google Scholar
  17. 17.
    Parchi, P., Ferrari, V., Piolanti, N., Andreani, L., Condino, S., Evangelisti, G., Lisanti, M.: Computer tomography prototyping and virtual procedure simulation in difficult cases of hip replacement surgery. Surg. Technol. Int. 23, 228–234 (2013)Google Scholar
  18. 18.
    Poffo, R., Toschi, A.P., Pope, R.B., Celullare, A.L., Benício, A., Fischer, C.H., Vieira, M.L.C., Teruya, A., Hatanaka, D.M., Rusca, G.F., et al.: Robotic surgery in cardiology: a safe and effective procedure. Einstein (Sao Paulo) 11(3), 296–302 (2013)CrossRefGoogle Scholar
  19. 19.
    Turini, G., Moglia, A., Ferrari, V., Ferrari, M., Mosca, F.: Patient-specific surgical simulator for the pre-operative planning of single-incision laparoscopic surgery with bimanual robots. Comput. Aided Surg. 17(3), 103–112 (2012)CrossRefGoogle Scholar
  20. 20.
    Wutzler, A., Wolber, T., Haverkamp, W., Boldt, L.H.: Robotic ablation of atrialfibrillation. J. Vis. Exp. JoVE 99 (2015)Google Scholar
  21. 21.
    Xu, K., Zheng, X.: Configuration comparison for surgical robotic systems using a single access port and continuum mechanisms. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3367–3374. IEEE (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giuseppe Turini
    • 1
    • 2
    Email author
  • Sara Condino
    • 2
  • Sara Sinceri
    • 2
  • Izadyar Tamadon
    • 3
  • Simona Celi
    • 4
  • Claudio Quaglia
    • 3
  • Michele Murzi
    • 4
  • Giorgio Soldani
    • 5
  • Arianna Menciassi
    • 3
  • Vincenzo Ferrari
    • 2
    • 6
  • Mauro Ferrari
    • 2
  1. 1.Computer Science DepartmentKettering UniversityFlintUSA
  2. 2.Department of Translational Research on New Technologies in Medicine and Surgery, EndoCAS CenterUniversity of PisaPisaItaly
  3. 3.The Biorobotics InstituteScuola Superiore Sant’AnnaPisaItaly
  4. 4.Fondazione Toscana Gabriele MonasterioPisaItaly
  5. 5.Consiglio Nazionale delle Ricerche, Istituto di Fisiologia ClinicaPisaItaly
  6. 6.Information Engineering DepartmentUniversity of PisaPisaItaly

Personalised recommendations