Skip to main content

Robot Creation from Functional Specifications

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

The design of new robots is often a time-intensive task requiring multi-disciplinary expertise, making it difficult to create custom robots on demand. To help address these issues, this work presents an integrated end-to-end system for rapidly creating printable robots from a Structured English description of desired behavior. Linear temporal logic (LTL) is used to formally represent the functional requirements from a structured task specification, and a modular component library is used to ground the propositions and generate structural specifications; complete mechanical, electrical, and software designs are then automatically synthesized. The ability and versatility of this system are demonstrated by sample robots designed in this manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayala, A.I.M, Andersson, S.B, Belta, C.: Probabilistic control from time-bounded temporal logic specifications in dynamic environments. In: Robotics and Automation (ICRA), pp. 4705–4710 (2012)

    Google Scholar 

  2. Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal goals. In: Robotics and Automation (ICRA), pp. 2689–2696 (2010)

    Google Scholar 

  3. Birkmeyer, P., Peterson, K., Fearing, R.S.: Dash: a dynamic 16g hexapedal robot. In: Intelligent Robots and Systems (IROS), pp. 2683–2689. IEEE (2009)

    Google Scholar 

  4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D., Tachi, T.: Origamizer: a practical algorithm for folding any polyhedron (2009)

    Google Scholar 

  6. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: Robotics and Automation (ICRA), pp. 2020–2025 (2005)

    Google Scholar 

  7. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. In: Proceedings of the 2nd IJCAI, London, UK, pp. 608–620 (1971)

    Google Scholar 

  8. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: experimenting with language, temporal Logic and robot control. In: IROS, pp. 1988–1993 (2010)

    Google Scholar 

  9. Hoover, A.M., Fearing, R.S.: Fast scale prototyping for folded millirobots. In: Robotics and Automation (ICRA), 2008, pp. 886–892. IEEE (2008)

    Google Scholar 

  10. Hornby, G., Lipson, H., Pollack, J.: Generative representations for the automated design of modular physical robots. IEEE Trans. Robot. Autom. 19(4), 703–719 (2003)

    Article  Google Scholar 

  11. Karaman, S., Frazzoli, E.: Complex mission optimization for multiple-UAVs using linear temporal logic. In: American Control Conference, Seattle, WA, pp. 2003–2009 (2008)

    Google Scholar 

  12. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Where’s Waldo? Sensor-based temporal logic motion planning. In: Robotics and Automation (ICRA), pp. 3116–3121 (2007)

    Google Scholar 

  14. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured english to robot controllers. Adv. Robot. 22(12), 1343–1359 (2008)

    Article  Google Scholar 

  15. Lang, R.: Origami Design Secrets: Mathematical Methods for an Ancient Art. A K Peters/CRC Press, Boca Raton (2012)

    MATH  Google Scholar 

  16. Livingston, S.C., Prabhakar, P., Jose, A.B., Murray, R.M.: Patching task-level robot controllers based on a local mu-calculus formula. In: Robotics and Automation (ICRA), pp. 4588–4595 (2013)

    Google Scholar 

  17. McDermott, D., et al.: PDDL – the planning domain definition language – version 1.2. Technical report, Yale Center for Computational Vision and Control (1998)

    Google Scholar 

  18. Mehta, A.M., DelPreto, J., Shaya, B., Rus, D.: Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In: Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  19. Onal, C., Wood, R., Rus, D.: An origami-inspired approach to worm robots. IEEE/ASME Trans. Mechatronics 18(2), 430–438 (2013)

    Article  Google Scholar 

  20. Raman, V., et al.: Sorry Dave, I’m afraid I can’t do that: explaining unachievable robot tasks using natural language. In: Robotics: Science and Systems IX, Technische Universität Berlin, Berlin, Germany, 24 June–28 June 2013 (2013)

    Google Scholar 

  21. Romanishin, J., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4288–4295 (2013)

    Google Scholar 

  22. Shimoyama, I., Miura, H., Suzuki, K., Ezura, Y.: Insect-like microrobots with external skeletons. IEEE Control Syst. 13(1), 37–41 (1993)

    Article  Google Scholar 

  23. Tama Software Ltd. Pepakura designer (2015). http://www.tamasoft.co.jp/pepakura-en/. Accessed 01 Apr 2015

  24. Wolff, E.M., Topcu, U., Murray, R.M.: Optimization-based trajectory generation with linear temporal logic specifications. In: Robotics and Automation (ICRA), pp. 5319–5325 (2014)

    Google Scholar 

  25. Yim, M., Duff, D., Roufas, K.: PolyBot: a modular reconfigurable robot. In: Robotics and Automation (ICRA), vol. 1, pp. 514–520 (2000)

    Google Scholar 

  26. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by NSF ExCAPE and grants #1240383 and #1138967 and NSF Graduate Research Fellowship 1122374, for which the authors express thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur M. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mehta, A.M., DelPreto, J., Wong, K.W., Hamill, S., Kress-Gazit, H., Rus, D. (2018). Robot Creation from Functional Specifications. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics