Advertisement

Engineering Advanced Models of the Glioblastoma Microenvironment Using Biomaterials

  • Andrew Rape
  • Sanjay KumarEmail author
Chapter
Part of the Biology of Extracellular Matrix book series (BEM)

Abstract

Glioblastoma (GBM) is the most common and deadly primary brain cancer. Patients diagnosed with GBM have a mean survival time of only 21 months, despite an intense push over the past several decades to dissect underlying mechanisms and develop new therapies. Whereas discovery efforts related to GBM have traditionally focused on cell-intrinsic factors, such as genetic and epigenetic lesions, it has more recently become clear that cell-extrinsic factors within the tumor microenvironment play important pathogenic roles as well. More surprisingly, physical aspects of the microenvironment, including tissue structure and mechanics, can regulate signaling events that contribute to dysplasia, invasion, and metastasis. This chapter will describe the basic biology of physical microenvironmental regulation of the GBM, with a focus on the extracellular matrix. We will also describe how components of the physical microenvironment can be recapitulated using biomaterials technology and how these new platforms can contribute to next-generation culture systems for discovery and screening.

References

  1. Agnihotri S, Burrell KE, Wolf A et al (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz) 61:25–41CrossRefGoogle Scholar
  2. Alberti K, Davey RE, Onishi K et al (2008) Functional immobilization of signaling proteins enables control of stem cell fate. Nat Methods 5:645–650CrossRefPubMedGoogle Scholar
  3. Altaner C (2008) Glioblastoma and stem cells. Neoplasma 55:369–374PubMedGoogle Scholar
  4. Ananthanarayanan B, Kim Y, Kumar S (2011) Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform. Biomaterials 32:7913–7923CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol 22:863–866CrossRefPubMedGoogle Scholar
  6. Ariza A, López D, Mate JL et al (1995) Role of CD44 in the invasiveness of glioblastoma multiforme and the noninvasiveness of meningioma: an immunohistochemistry study. Hum Pathol 26:1144–1147CrossRefPubMedGoogle Scholar
  7. Belien ATJ, Paganetti PA, Schwab ME (1999) Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  8. Belot N, Rorive S, Doyen I et al (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36:375–390CrossRefPubMedGoogle Scholar
  9. Berens ME, Giese A (1999) “…those left behind.” Biology and oncology of invasive glioma cells. Neoplasia 1:208–219CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang C-W, Kumar S (2013) Vinculin tension distributions of individual stress fibers within cell–matrix adhesions. J Cell Sci 126:3021–3030CrossRefPubMedPubMedCentralGoogle Scholar
  11. Charles NA, Holland EC, Gilbertson R et al (2011) The brain tumor microenvironment. Glia 59:1169–1180CrossRefPubMedGoogle Scholar
  12. Dandy WE (1928) Removal of right cerebral hemisphere for certain tumors with hemiplegia: preliminary report. JAMA 90:823–825CrossRefGoogle Scholar
  13. Deforest CA, Polizzoti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664CrossRefPubMedPubMedCentralGoogle Scholar
  14. Delpech B, Maingonnat C, Girard N et al (1993) Hyaluronan and hyaluronectin in the extracellular matrix of human brain tumour stroma. Eur J Cancer 29A:1012–1017CrossRefPubMedGoogle Scholar
  15. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228CrossRefPubMedGoogle Scholar
  16. Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRefPubMedGoogle Scholar
  17. Elkin BS, Azeloglu EU, Costa KD et al (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24:812–822CrossRefPubMedGoogle Scholar
  18. Engler A, Bacakova L, Newman C et al (2004) Substrate compliance versus ligand density in cell on gel responses. Biophys J 86:617–628CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fernandes TG, Diogo MM, Clark DS et al (2009) High-throughput cellular microarray platforms: applications in drug discovery, toxicology and stem cell research. Trends Biotechnol 27:342–349CrossRefPubMedPubMedCentralGoogle Scholar
  20. Friedlander DR, Zagzag D, Shiff B et al (1996) Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res 56:1939–1947PubMedGoogle Scholar
  21. Gallego-Perez D, Higuita-Castro N, Denning L et al (2012) Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab Chip 12:4424–4432CrossRefPubMedGoogle Scholar
  22. Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592CrossRefPubMedGoogle Scholar
  23. Giese A, Westphal M (1996) Glioma invasion in the central nervous system. Neurosurgery 39:235–250CrossRefPubMedGoogle Scholar
  24. Giese A, Loo MA, Rief MD et al (1995) Substrates for astrocytoma invasion. Neurosurgery 37:294–301CrossRefGoogle Scholar
  25. Gordon VD, Valentine MT, Gardel ML et al (2003) Measuring the mechanical stress induced by an expanding multicellular tumor system: a case study. Exp Cell Res 289:58–66CrossRefPubMedGoogle Scholar
  26. Griffith LG, Schwartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224CrossRefPubMedGoogle Scholar
  27. Herishanu Y, Gibellini F, Njuguna N et al (2011) CD44 signaling via PI3K/AKT and MAPK/ERK pathways protects CLL cells from spontaneous and drug induced apoptosis through MCL-1. Leuk Lymphoma 52:1758–1769CrossRefPubMedPubMedCentralGoogle Scholar
  28. Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668CrossRefPubMedGoogle Scholar
  29. Huse HT, Holland EC (2009) Genetically engineered mouse models of brain cancer and the promise of preclinical testing. Brain Pathol 19(1):132–143CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kaufman LJ, Brangwynne CP, Kasza KE et al (2005) Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J 89:635–650CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kawataki T, Yamane T, Naganuma H et al (2007) Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res 313:3819–3831CrossRefPubMedGoogle Scholar
  32. Khademhosseini A, Langer R, Borenstein J et al (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci USA 103:2480–2487CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim Y, Kumar S (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res 12(10):1416–1429CrossRefPubMedPubMedCentralGoogle Scholar
  34. Knott JC, Mahesparan R, Garcia-Cabrera I et al (1998) Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int J Cancer 75:864–872CrossRefPubMedGoogle Scholar
  35. Kolega J, Janson LW, Taylor DL (1991) The role of solation-contraction coupling in regulating stress fiber dynamics in nonmuscle cells. J Cell Biol 114:993–1003CrossRefPubMedGoogle Scholar
  36. Koochekpour S, Pilkington GJ, Merzak A (1995) Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63:450–454CrossRefPubMedGoogle Scholar
  37. Lathia JD, Li M, Hall PE et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol 72:766–778CrossRefPubMedPubMedCentralGoogle Scholar
  38. Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404PubMedGoogle Scholar
  39. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefPubMedGoogle Scholar
  41. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mathur A, Loskill P, Shao K et al (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883CrossRefPubMedPubMedCentralGoogle Scholar
  43. McLendon R, Friedman A, Bigner D et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  44. Moon JJ, West JL (2008) Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr Top Med Chem 8(4):300–310CrossRefPubMedPubMedCentralGoogle Scholar
  45. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785CrossRefPubMedGoogle Scholar
  46. Nakajima M, Ishimuro T, Kato K et al (2007) Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 28:1048–1060CrossRefPubMedGoogle Scholar
  47. Oakes PW, Beckham Y, Stricker J et al (2012) Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J Cell Biol 196:363–374CrossRefPubMedPubMedCentralGoogle Scholar
  48. Osswald M, Jung E, Sahm F et al (2015) Brain tumor cells interconnect to a functional and resistant network. Nature 528(7850):93–98PubMedGoogle Scholar
  49. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–245CrossRefPubMedGoogle Scholar
  50. Pathak A, Kumar S (2012) Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc Natl Acad Sci USA 109(26):10334–10339CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pathak A, Kumar S (2013) Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Int Biol 5:1067–1075Google Scholar
  52. Paulus W, Baur I, Schuppan D et al (1993) Characterization of integrin receptors in normal and neoplastic human brain. Am J Pathol 143:154–163PubMedPubMedCentralGoogle Scholar
  53. Payne LS, Huang P (2013) The pathobiology of collagens in glioma. Mol Cancer Res 11(10):1129–1140CrossRefPubMedGoogle Scholar
  54. Pelham RJ, Wang Y (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94:13661–13665CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pietras A, Katz AM, Ekstrom EJ et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14(3):357–369CrossRefPubMedPubMedCentralGoogle Scholar
  56. Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cell Mol Life Sci 70:1335–1356CrossRefPubMedGoogle Scholar
  57. Rape A, Zibinsky M, Murthy N, Kumar S (2015) A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat Commun 6:8129CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ross AM, Jiang ZX, Bastmeyer M, Lahann J (2012) Physical aspects of cell culture substrates: topography, roughness, and elasticity. Small 8:336–355CrossRefPubMedGoogle Scholar
  59. Rutka JT, Muller M, Hubbard SL et al (1999) Astrocytoma adhesion to extracellular matrix: functional significance of integrin and focal adhesion kinase expression. J Neuropathol Exp Neurol 58:198–209CrossRefPubMedGoogle Scholar
  60. Scherer H (1938) Structural development in gliomas. Am J Cancer 34:333–348Google Scholar
  61. Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63:1–35CrossRefGoogle Scholar
  62. Selbekk T, Brekken R, Solheim O et al (2010) Tissue motion and strain in the human brain assessed by intraoperative ultrasound in glioma patients. Ultrasound Med Biol 36:2–10CrossRefPubMedGoogle Scholar
  63. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128CrossRefPubMedGoogle Scholar
  64. Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F et al (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 32(37):12950–12960Google Scholar
  65. Solon J, Levental I, Sengupta K et al (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–4461CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  67. Tentler JJ, Tan AC, Weekes CD et al (2012) Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol 9:338–350CrossRefPubMedPubMedCentralGoogle Scholar
  68. Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA 103:5567–5572CrossRefPubMedPubMedCentralGoogle Scholar
  69. Todhunter ME, Jee NY, Hughes AJ et al (2015) Programmed synthesis of three-dimensional tissues. Nat Methods 12:975–981CrossRefPubMedPubMedCentralGoogle Scholar
  70. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539CrossRefPubMedGoogle Scholar
  71. Tysnes BB, Mahesparan R, Thorsen F et al (1999) Laminin expression by glial fibrillary acidic protein positive cells in human gliomas. Int J Dev Neurosci 17:531–539CrossRefPubMedGoogle Scholar
  72. Ulrich T, Kumar S (2011) Mechanobiology in health and disease in the central nervous system. In: Nagatomi J (ed) Mechanobiology handbook. CRC Press, Boca Raton, pp 391–411CrossRefGoogle Scholar
  73. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRefPubMedPubMedCentralGoogle Scholar
  74. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wiranowska M, Ladd S, Moscinski LC et al (2010) Modulation of hyaluronan production by CD44 positive glioma cells. Int J Cancer 127:532–542CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610CrossRefPubMedGoogle Scholar
  77. Yang Y, Motte S, Kaufman LJ (2010) Pore size variable type I collagen gels and their interaction with glioma cells. Biomaterials 31:5678–5688CrossRefPubMedGoogle Scholar
  78. Zhu BS, Zhang QQ, Lu QH et al (2004) Nanotopographical guidance of C6 glioma cell alignment and oriented growth. Biomaterials 25:4215–4223CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations