Internalization of Collagen: An Important Matrix Turnover Pathway in Cancer

  • Dorota Ewa Kuczek
  • Mie Linder Hübbe
  • Daniel Hargbøl MadsenEmail author
Part of the Biology of Extracellular Matrix book series (BEM)


Invasive tumor growth is associated with extensive remodeling of the surrounding extracellular matrix (ECM). Degradation of the original ECM scaffolds, which primarily consist of collagens, is key to the morbidity of the cancer as it leads to destruction of the original tissue and replacement with cancerous tissue. The degradation of collagen involves the cleavage of collagen fibers by extracellular proteases and the subsequent receptor-mediated internalization of large collagen fragments for lysosomal degradation. The extracellular cleavage reactions are typically mediated by matrix metalloproteinases (MMPs) that cleave the collagen strands at specific sites, thereby releasing defined collagen fragments. The intracellular collagen degradation pathway is primarily mediated by two endocytic receptors, uPARAP/Endo180 and the mannose receptor (MR), that bind collagen fragments at the cell surface and direct them to the lysosomes for complete proteolytic degradation. Macrophages and most mesenchymal cells can internalize collagen through the action of MR and uPARAP/Endo180, respectively. These receptors bind preferentially to cleaved collagen and cooperate with MMPs to degrade collagen fibers in a sequential process involving MMP-mediated collagen cleavage followed by receptor-mediated internalization of collagen fragments for lysosomal degradation. In vivo, MR-mediated collagen uptake has been suggested to be dominant in many situations with uPARAP/Endo180 playing a smaller role. In connection to cancer, uPARAP/Endo180 is often upregulated and mostly restricted to cancer-associated fibroblasts, and the action of uPARAP/Endo180 promotes tumor growth and counteracts the development of fibrosis. MR is expressed by M2 macrophages in healthy dermis and in solid tumors and mediates the efficient internalization of collagen. However, the direct functional consequences of this MR-mediated collagen degradation for cancer growth and invasion still need to be investigated.


  1. Abdelgawad ME, Søe K, Andersen TL, Merrild DMH, Christiansen P, Kjærsgaard-Andersen P, Delaisse J-M (2014) Does collagen trigger the recruitment of osteoblasts into vacated bone resorption lacunae during bone remodeling? Bone 67:181–188. doi: 10.1016/j.bone.2014.07.012 PubMedCrossRefGoogle Scholar
  2. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, Chen YY, Liphardt J, Hwang ES, Weaver VM (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol 7:1120–1134. doi: 10.1039/C5IB00040H CrossRefGoogle Scholar
  3. Atapattu L, Lackmann M, Janes PW (2014) The role of proteases in regulating Eph/ephrin signaling. Cell Adh Migr 8:294–307. doi: 10.4161/19336918.2014.970026 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bányai L, Patthy L (1991) Evidence for the involvement of type II domains in collagen binding by 72 kDa type IV procollagenase. FEBS Lett 282:23–25PubMedCrossRefGoogle Scholar
  5. Bányai L, Tordai H, Patthy L (1994) The gelatin-binding site of human 72 kDa type IV collagenase (gelatinase A). Biochem J 298(Pt 2):403–407PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beertsen W, Everts V (1977) The site of remodeling of collagen in the periodontal ligament of the mouse incisor. Anat Rec 189:479–497. doi: 10.1002/ar.1091890308 PubMedCrossRefGoogle Scholar
  7. Behrendt N, Rønne E, Danø K (1993) A novel, specific pro-urokinase complex on monocyte-like cells, detected by transglutaminase-catalyzed cross-linking. FEBS Lett 336:394–396PubMedCrossRefGoogle Scholar
  8. Behrendt N, Jensen ON, Engelholm LH, Mørtz E, Mann M, Danø K (2000) A urokinase receptor-associated protein with specific collagen binding properties. J Biol Chem 275:1993–2002PubMedCrossRefGoogle Scholar
  9. Biswas SK, Allavena P, Mantovani A (2013) Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol 35:585–600PubMedCrossRefGoogle Scholar
  10. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801. doi: 10.1038/nrm3904 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boskovic J, Arnold JN, Stilion R, Gordon S, Sim RB, Rivera-Calzada A, Wienke D, Isacke CM, Martinez-Pomares L, Llorca O (2006) Structural model for the mannose receptor family uncovered by electron microscopy of Endo180 and the mannose receptor. J Biol Chem 281:8780–8787. doi: 10.1074/jbc.M513277200 PubMedCrossRefGoogle Scholar
  12. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236. doi: 10.1056/NEJMoa062790 PubMedCrossRefGoogle Scholar
  13. Bredfeldt JS, Liu Y, Conklin MW, Keely PJ, Mackie TR, Eliceiri KW (2014) Automated quantification of aligned collagen for human breast carcinoma prognosis. J Pathol Inform 5:28. doi: 10.4103/2153-3539.139707 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bundesmann MM, Wagner TE, Chow Y-H, Altemeier WA, Steinbach T, Schnapp LM (2012) Role of urokinase plasminogen activator receptor-associated protein in mouse lung. Am J Respir Cell Mol Biol 46:233–239. doi: 10.1165/rcmb.2010-0485OC PubMedPubMedCentralCrossRefGoogle Scholar
  15. Burgdorf S, Lukacs-Kornek V, Kurts C (2006) The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J Immunol 176:6770–6776. doi: 10.4049/jimmunol.176.11.6770 PubMedCrossRefGoogle Scholar
  16. Burgdorf S, Schuette V, Semmling V, Hochheiser K, Lukacs-Kornek V, Knolle PA, Kurts C (2010) Steady-state cross-presentation of OVA is mannose receptor-dependent but inhibitable by collagen fragments. Proc Natl Acad Sci USA 107:E48–E49.; author reply E50–1. doi: 10.1073/pnas.1000598107 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178:1221–1232. doi: 10.1016/j.ajpath.2010.11.076 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392. doi: 10.1126/science.1067100 PubMedCrossRefGoogle Scholar
  19. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4:165–178. doi: 10.1242/dmm.004077 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cox TR, Erler JT (2014) Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res 20:3637–3643. doi: 10.1158/1078-0432.CCR-13-1059 PubMedCrossRefGoogle Scholar
  21. Creemers LB, Hoeben KA, Jansen DC, Buttle DJ, Beertsen W, Everts V (1998) Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol 16:575–584PubMedCrossRefGoogle Scholar
  22. Cullen JC (1972) Intracellular collagen in experimental arthritis in rats. J Bone Joint Surg Br 54:351–359PubMedGoogle Scholar
  23. Curino AC, Engelholm LH, Yamada SS, Holmbeck K, Lund LR, Molinolo AA, Behrendt N, Nielsen BS, Bugge TH (2005) Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 169:977–985. doi: 10.1083/jcb.200411153 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Danielsen CC (1987) Thermal stability of human-fibroblast-collagenase-cleavage products of type-I and type-III collagens. Biochem J 247:725–729PubMedPubMedCentralCrossRefGoogle Scholar
  25. Decock J, Thirkettle S, Wagstaff L, Edwards DR (2011) Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med 15:1254–1265. doi: 10.1111/j.1582-4934.2011.01302.x PubMedPubMedCentralCrossRefGoogle Scholar
  26. East L, Isacke CM (2002) The mannose receptor family. Biochim Biophys Acta 1572:364–386PubMedCrossRefGoogle Scholar
  27. East L, McCarthy A, Wienke D, Sturge J, Ashworth A, Isacke CM (2003) A targeted deletion in the endocytic receptor gene Endo180 results in a defect in collagen uptake. EMBO Rep 4:710–716. doi: 10.1038/sj.embor.embor882 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi: 10.1038/nrc745 PubMedCrossRefGoogle Scholar
  29. Engelholm LH, Nielsen BS, Netzel-Arnett S, Solberg H, Chen XD, Lopez Garcia JM, Lopez-Otin C, Young MF, Birkedal-Hansen H, Danø K, Lund LR, Behrendt N, Bugge TH (2001) The urokinase plasminogen activator receptor-associated protein/endo180 is coexpressed with its interaction partners urokinase plasminogen activator receptor and matrix metalloprotease-13 during osteogenesis. Lab Invest 81:1403–1414PubMedCrossRefGoogle Scholar
  30. Engelholm LH, List K, Netzel-Arnett S, Cukierman E, Mitola DJ, Aaronson H, Kjøller L, Larsen JK, Yamada KM, Strickland DK, Holmbeck K, Danø K, Birkedal-Hansen H, Behrendt N, Bugge TH (2003) uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion. J Cell Biol 160:1009–1015. doi: 10.1083/jcb.200211091 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Engelholm LH, Melander MC, Hald A, Persson M, Madsen DH, Jürgensen HJ, Johansson K, Nielsen C, Nørregaard KS, Ingvarsen SZ, Kjaer A, Trovik CS, Laerum OD, Bugge TH, Eide J, Behrendt N (2016) Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180. J Pathol 238:120–133. doi: 10.1002/path.4661 PubMedCrossRefGoogle Scholar
  32. Everts V, Beertsen W, Tigchelaar-Gutter W (1985) The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64. Coll Relat Res 5:315–336PubMedCrossRefGoogle Scholar
  33. Everts V, van der Zee E, Creemers L, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 28:229–245PubMedCrossRefGoogle Scholar
  34. Fan M-H, Zhu Q, Li H-H, Ra H-J, Majumdar S, Gulick DL, Jerome JA, Madsen DH, Christofidou-Solomidou M, Speicher DW, Bachovchin WW, Feghali-Bostwick C, Puré E (2015) Fibroblast activation protein (FAP) accelerates collagen degradation and clearance from lung in mice. J Biol Chem 291:8070–8089. doi: 10.1074/jbc.M115.701433 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, Michaux C, Druet T, Huijbers IJ, Isacke CM, Coppieters W, Georges M, Charlier C (2009) Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle. PLoS Genet 5:e1000666. doi: 10.1371/journal.pgen.1000666 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fields GB (2013) Interstitial collagen catabolism. J Biol Chem 288:8785–8793. doi: 10.1074/jbc.R113.451211 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Garant PR (1976) Collagen resorption by fibroblasts. A theory of fibroblastic maintenance of the periodontal ligament. J Periodontol 47:380–390. doi: 10.1902/jop.1976.47.7.380 PubMedCrossRefGoogle Scholar
  38. Giblin SP, Midwood KS (2015) Tenascin-C: Form versus function. Cell Adh Migr 9:48–82. doi: 10.4161/19336918.2014.987587 PubMedCrossRefGoogle Scholar
  39. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604. doi: 10.1016/j.immuni.2010.05.007 PubMedCrossRefGoogle Scholar
  40. Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF (2001) Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev 10:243–248PubMedGoogle Scholar
  41. Highberger JH, Corbett C, Gross J (1979) Isolation and characterization of a peptide containing the site of cleavage of the chick skin collagen alpha 1[I] chain by animal collagenases. Biochem Biophys Res Commun 89:202–208PubMedCrossRefGoogle Scholar
  42. Hipps DS, Hembry RM, Docherty AJ, Reynolds JJ, Murphy G (1991) Purification and characterization of human 72-kDa gelatinase (type IV collagenase). Use of immunolocalisation to demonstrate the non-coordinate regulation of the 72-kDa and 95-kDa gelatinases by human fibroblasts. Biol Chem Hoppe Seyler 372:287–296PubMedCrossRefGoogle Scholar
  43. Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Gehron Robey P, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92. doi: 10.1016/S0092-8674(00)80064-1 PubMedCrossRefGoogle Scholar
  44. Honardoust HA, Jiang G, Koivisti L, Wienke D, Isacke CM, Larjava H, Häkkinen L (2006) Expression of Endo180 is spatially and temporally regulated during wound healing. Histopathology 49:634–648. doi: 10.1111/j.1365-2559.2006.02559.x PubMedCrossRefGoogle Scholar
  45. Howard MJ, Chambers MG, Mason RM, Isacke CM (2004) Distribution of Endo180 receptor and ligand in developing articular cartilage. Osteoarthritis Cartilage 12:74–82PubMedCrossRefGoogle Scholar
  46. Huijbers IJ, Iravani M, Popov S, Robertson D, Al-Sarraj S, Jones C, Isacke CM (2010) A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One 5:e9808. doi: 10.1371/journal.pone.0009808 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  48. Ikenaga N, Ohuchida K, Mizumoto K, Akagawa S, Fujiwara K, Eguchi D, Kozono S, Ohtsuka T, Takahata S, Tanaka M (2012) Pancreatic cancer cells enhance the ability of collagen internalization during epithelial-mesenchymal transition. PLoS One 7:e40434. doi: 10.1371/journal.pone.0040434 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235:3222–3229. doi: 10.1002/dvdy.20972 PubMedCrossRefGoogle Scholar
  50. Ingvarsen S, Porse A, Erpicum C, Maertens L, Jürgensen HJ, Madsen DH, Melander MC, Gardsvoll H, Hoyer-Hansen G, Noel A, Holmbeck K, Engelholm LH, Behrendt N (2013) Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP Impact on Lymphangiogenesis. J Biol Chem 288:10195–10204PubMedPubMedCentralCrossRefGoogle Scholar
  51. Isacke CM, van der Geer P, Hunter T, Trowbridge IS (1990) p180, a novel recycling transmembrane glycoprotein with restricted cell type expression. Mol Cell Biol 10:2606–2618PubMedPubMedCentralCrossRefGoogle Scholar
  52. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252. doi: 10.1038/nrc2618 PubMedCrossRefGoogle Scholar
  53. Jürgensen HJ, Madsen DH, Ingvarsen S, Melander MC, Gårdsvoll H, Patthy L, Engelholm LH, Behrendt N (2011) A novel functional role of collagen glycosylation: interaction with the endocytic collagen receptor uPARAP/ENDO180. J Biol Chem 286:32736–32748PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jürgensen HJ, Johansson K, Madsen DH, Porse A, Melander MC, Sørensen KR, Nielsen C, Bugge TH, Behrendt N, Engelholm LH (2014) Complex determinants in specific members of the mannose receptor family govern collagen endocytosis. J Biol Chem 289:7935–7947PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67. doi: 10.1016/j.cell.2010.03.015 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kjøller L, Engelholm LH, Høyer-Hansen M, Danø K, Bugge TH, Behrendt N (2004) uPARAP/endo180 directs lysosomal delivery and degradation of collagen IV. Exp Cell Res 293:106–116PubMedCrossRefGoogle Scholar
  57. Kogianni G, Walker MM, Waxman J, Sturge J (2009) Endo180 expression with cofunctional partners MT1-MMP and uPAR-uPA is correlated with prostate cancer progression. Eur J Cancer 45:685–693. doi: 10.1016/j.ejca.2008.11.023 PubMedCrossRefGoogle Scholar
  58. Krane SM, Inada M (2008) Matrix metalloproteinases and bone. Bone 43:7–18. doi: 10.1016/j.bone.2008.03.020 PubMedCrossRefGoogle Scholar
  59. Lee W, Sodek J, McCulloch CA (1996) Role of integrins in regulation of collagen phagocytosis by human fibroblasts. J Cell Physiol 168:695–704. doi: 10.1002/(SICI)1097-4652(199609)168:3<695::AID-JCP22>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  60. Lee SJ, Evers S, Roeder D, Parlow AF, Risteli J, Risteli L, Lee YC, Feizi T, Langen H, Nussenzweig MC (2002) Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–1901. doi: 10.1126/science.1069540 PubMedCrossRefGoogle Scholar
  61. Lee SJ, Zheng N-Y, Clavijo M, Nussenzweig MC (2003) Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71:437–445PubMedPubMedCentralCrossRefGoogle Scholar
  62. Leitinger B, Hohenester E (2007) Mammalian collagen receptors. Matrix Biol 26:146–155. doi: 10.1016/j.matbio.2006.10.007 PubMedCrossRefGoogle Scholar
  63. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SFT, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906. doi: 10.1016/j.cell.2009.10.027 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Linehan SA (2005) The mannose receptor is expressed by subsets of APC in non-lymphoid organs. BMC Immunol 6:4. doi: 10.1186/1471-2172-6-4 PubMedPubMedCentralCrossRefGoogle Scholar
  65. López-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA (2012) Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 23:236–251. doi: 10.1681/ASN.2011030310 PubMedPubMedCentralCrossRefGoogle Scholar
  66. López-Otín C, Palavalli LH, Samuels Y (2009) Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle 8:3657–3662PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058. doi: 10.1101/cshperspect.a005058 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406. doi: 10.1083/jcb.201102147 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Madsen DH, Bugge TH (2013) Imaging collagen degradation in vivo highlights a key role for M2-polarized macrophages in extracellular matrix degradation. Oncoimmunology 2:e27127PubMedPubMedCentralCrossRefGoogle Scholar
  70. Madsen DH, Bugge TH (2015) The source of matrix-degrading enzymes in human cancer: problems of research reproducibility and possible solutions. J Cell Biol 209:195–198. doi: 10.1083/jcb.201501034 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Madsen DH, Engelholm LH, Ingvarsen S, Hillig T, Wagenaar-Miller RA, Kjøller L, Gårdsvoll H, Høyer-Hansen G, Holmbeck K, Bugge TH, Behrendt N (2007) Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/endo180, cooperate in fibroblast-mediated collagen degradation. J Biol Chem 282:27037–27045. doi: 10.1074/jbc.M701088200 PubMedCrossRefGoogle Scholar
  72. Madsen DH, Ingvarsen S, Jürgensen HJ, Melander MC, Kjøller L, Moyer A, Honoré C, Madsen CA, Garred P, Burgdorf S, Bugge TH, Behrendt N, Engelholm LH (2011) The non-phagocytic route of collagen uptake: a distinct degradation pathway. J Biol Chem 286:26996–27010PubMedPubMedCentralCrossRefGoogle Scholar
  73. Madsen DH, Jürgensen HJ, Ingvarsen S, Melander MC, Vainer B, Egerod KL, Hald A, Rønø B, Madsen CA, Bugge TH, Engelholm LH, Behrendt N (2012) Endocytic collagen degradation: a novel mechanism involved in protection against liver fibrosis. J Pathol 227:94–105PubMedCrossRefGoogle Scholar
  74. Madsen DH, Jürgensen HJ, Ingvarsen S, Melander MC, Albrechtsen R, Hald A, Holmbeck K, Bugge TH, Behrendt N, Engelholm LH (2013a) Differential actions of the endocytic collagen receptor uPARAP/Endo180 and the collagenase MMP-2 in bone homeostasis. PLoS One 8:e71261. doi: 10.1371/journal.pone.0071261 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Madsen DH, Leonard D, Masedunskas A, Moyer A, Jürgensen HJ, Peters DE, Amornphimoltham P, Selvaraj A, Yamada SS, Brenner DA, Burgdorf S, Engelholm LH, Behrendt N, Holmbeck K, Weigert R, Bugge TH (2013b) M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202:951–966PubMedPubMedCentralCrossRefGoogle Scholar
  76. Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev A V, Smedsrød BH, McCourt PAG (2007) The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 45:1454–1461. doi: 10.1002/hep.21639 PubMedCrossRefGoogle Scholar
  77. Martin MD, Matrisian LM (2007) The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 26:717–724. doi: 10.1007/s10555-007-9089-4 PubMedCrossRefGoogle Scholar
  78. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. doi: 10.1146/annurev.immunol.021908.132532 PubMedCrossRefGoogle Scholar
  79. Martinez-Pomares L, Wienke D, Stillion R, McKenzie EJ, Arnold JN, Harris J, McGreal E, Sim RB, Isacke CM, Gordon S (2006) Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol 36:1074–1082. doi: 10.1002/eji.200535685 PubMedCrossRefGoogle Scholar
  80. Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N (2015) The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review). Int J Oncol 47:1177–1188. doi: 10.3892/ijo.2015.3120 PubMedPubMedCentralGoogle Scholar
  81. Mettouchi A, Meneguzzi G (2006) Distinct roles of beta1 integrins during angiogenesis. Eur J Cell Biol 85:243–247. doi: 10.1016/j.ejcb.2005.09.010 PubMedCrossRefGoogle Scholar
  82. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775. doi: 10.1038/nrc1949 PubMedCrossRefGoogle Scholar
  83. Mousavi SA, Sato M, Sporstøl M, Smedsrød B, Berg T, Kojima N, Senoo H (2005) Uptake of denatured collagen into hepatic stellate cells: evidence for the involvement of urokinase plasminogen activator receptor-associated protein/Endo180. Biochem J 387:39–46. doi: 10.1042/BJ20040966 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mousavi SA, Fønhus MS, Berg T (2009) Up-regulation of uPARAP/Endo180 during culture activation of rat hepatic stellate cells and its presence in hepatic stellate cell lines from different species. BMC Cell Biol 10:39. doi: 10.1186/1471-2121-10-39 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nagelkerke A, Bussink J, Rowan AE, Span PN (2015) The mechanical microenvironment in cancer: how physics affects tumours. Semin Cancer Biol 35:62–70. doi: 10.1016/j.semcancer.2015.09.001 PubMedCrossRefGoogle Scholar
  86. Napper CE, Drickamer K, Taylor ME (2006) Collagen binding by the mannose receptor mediated through the fibronectin type II domain. Biochem J 395:579–586. doi: 10.1042/BJ20052027 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61. doi: 10.1016/j.immuni.2014.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Paracuellos P, Briggs DC, Carafoli F, Lončar T, Hohenester E (2015) Insights into collagen uptake by C-type mannose receptors from the crystal structure of Endo180 domains 1–4. Structure 23:2133–2142. doi: 10.1016/j.str.2015.09.004 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512PubMedCrossRefGoogle Scholar
  90. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254. doi: 10.1016/j.ccr.2005.08.010 PubMedCrossRefGoogle Scholar
  91. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. doi: 10.15252/embr.201439246 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11. doi: 10.1186/1741-7015-6-11 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19:1264–1272. doi: 10.1038/nm.3337 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rivera-Calzada A, Robertson D, MacFadyen JR, Boskovic J, Isacke CM, Llorca O (2003) Three-dimensional interplay among the ligand-binding domains of the urokinase-plasminogen-activator-receptor-associated protein, Endo180. EMBO Rep 4:807–812. doi: 10.1038/sj.embor.embor898 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rohani MG, Chow Y-H, Razumova M V, Ash S, Hung CF, Schnapp LM (2014) uPARAP function in cutaneous wound repair. PLoS One 9:e92660. doi: 10.1371/journal.pone.0092660 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rowe RG, Weiss SJ (2008) Breaching the basement membrane: who, when and how? Trends Cell Biol 18:560–574PubMedCrossRefGoogle Scholar
  97. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458PubMedPubMedCentralCrossRefGoogle Scholar
  98. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean M-C, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122:899–910. doi: 10.1172/JCI45817 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sanderson MP, Dempsey PJ, Dunbar AJ (2006) Control of ErbB signaling through metalloprotease mediated ectodomain shedding of EGF-like factors. Growth Factors 24:121–136. doi: 10.1080/08977190600634373 PubMedCrossRefGoogle Scholar
  100. Sartelet A, Klingbeil P, Franklin CK, Fasquelle C, Géron S, Isacke CM, Georges M, Charlier C (2012) Allelic heterogeneity of crooked tail syndrome: result of balancing selection? Anim Genet 43:604–607. doi: 10.1111/j.1365-2052.2011.02311.x PubMedCrossRefGoogle Scholar
  101. Schedin P, Keely PJ (2011) Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 3:a003228. doi: 10.1101/cshperspect.a003228 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Scherft JP, Heersche JN (1975) Accumulation of collagen-containing vacuoles in osteoblasts after administration of colchicine. Cell Tissue Res 157:353–365PubMedCrossRefGoogle Scholar
  103. Schlesinger PH, Doebber TW, Mandell BF, White R, DeSchryver C, Rodman JS, Miller MJ, Stahl P (1978) Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J 176:103–109PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schnack Nielsen B, Rank F, Engelholm LH, Holm A, Danø K, Behrendt N (2002) Urokinase receptor-associated protein (uPARAP) is expressed in connection with malignant as well as benign lesions of the human breast and occurs in specific populations of stromal cells. Int J Cancer 98:656–664PubMedCrossRefGoogle Scholar
  105. Segal G, Lee W, Arora P, McKee M, Downey G, McCulloch C (2001) Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. J Cell Sci 114:119–129PubMedGoogle Scholar
  106. Sheikh H, Yarwood H, Ashworth A, Isacke CM (2000) Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. J Cell Sci 113(Pt 6):1021–1032PubMedGoogle Scholar
  107. Shi F, Harman J, Fujiwara K, Sottile J (2010) Collagen I matrix turnover is regulated by fibronectin polymerization. Am J Physiol Cell Physiol 298:C1265–C1275. doi: 10.1152/ajpcell.00341.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Smith L, Wagner TE, Huizar I, Schnapp LM (2008) uPARAP expression during murine lung development. Gene Expr Patterns 8:486–493. doi: 10.1016/j.gep.2008.06.006 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Stark M, Kühn K (1968) The properties of molecular fragments obtained on treating calfskin collagen with collagenase from clostridium histolyticum. Eur J Biochem 6:534–541PubMedCrossRefGoogle Scholar
  110. Sulek J, Wagenaar-Miller RA, Shireman J, Molinolo A, Madsen DH, Engelholm LH, Behrendt N, Bugge TH (2007) Increased expression of the collagen internalization receptor uPARAP/Endo180 in the stroma of head and neck cancer. J Histochem Cytochem 55:347–353PubMedCrossRefGoogle Scholar
  111. Swain SD, Lee SJ, Nussenzweig MC, Harmsen AG (2003) Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect Immun 71:6213–6221PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takahashi K, Donovan MJ, Rogers RA, Ezekowitz RA (1998) Distribution of murine mannose receptor expression from early embryogenesis through to adulthood. Cell Tissue Res 292:311–323PubMedCrossRefGoogle Scholar
  113. Takahashi S, Yamada-Okabe H, Hamada K, Ohta S, Kawase T, Yoshida K, Toda M (2011) Downregulation of uPARAP mediates cytoskeletal rearrangements and decreases invasion and migration properties in glioma cells. J Neurooncol 103:267–276. doi: 10.1007/s11060-010-0398-z PubMedCrossRefGoogle Scholar
  114. Tryggvason K, Höyhtyä M, Salo T (1987) Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 907:191–217. doi: 10.1016/0304-419X(87)90006-0 PubMedGoogle Scholar
  115. van Noorden CJ, Everts V (1991) Selective inhibition of cysteine proteinases by Z-Phe-AlaCH2F suppresses digestion of collagen by fibroblasts and osteoclasts. Biochem Biophys Res Commun 178:178–184PubMedCrossRefGoogle Scholar
  116. Vasievich EA, Huang L (2011) The suppressive tumor microenvironment: a challenge in cancer immunotherapy. Mol Pharm 8:635–641PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wagenaar-Miller RA, Engelholm LH, Gavard J, Yamada SS, Gutkind JS, Behrendt N, Bugge TH, Holmbeck K (2007) Complementary roles of intracellular and pericellular collagen degradation pathways in vivo. Mol Cell Biol 27:6309–6322. doi: 10.1128/MCB.00291-07 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang H-W, Joyce JA (2010) Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle 9:4824–4835PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wienke D, MacFadyen JR, Isacke CM (2003) Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol Biol Cell 14:3592–3604. doi: 10.1091/mbc.E02-12-0814 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wienke D, Davies GC, Johnson DA, Sturge J, Lambros MBK, Savage K, Elsheikh SE, Green AR, Ellis IO, Robertson D, Reis-Filho JS, Isacke CM (2007) The collagen receptor Endo180 (CD280) Is expressed on basal-like breast tumor cells and promotes tumor growth in vivo. Cancer Res 67:10230–10240. doi: 10.1158/0008-5472.CAN-06-3496 PubMedCrossRefGoogle Scholar
  121. Wu K, Yuan J, Lasky LA (1996) Characterization of a novel member of the macrophage mannose receptor type C lectin family. J Biol Chem 271:21323–21330PubMedCrossRefGoogle Scholar
  122. Wu X, Spitz MR, Lee JJ, Lippman SM, Ye Y, Yang H, Khuri FR, Kim E, Gu J, Lotan R, Hong WK (2009) Novel susceptibility loci for second primary tumors/recurrence in head and neck cancer patients: large-scale evaluation of genetic variants. Cancer Prev Res (Phila) 2:617–624. doi: 10.1158/1940-6207.CAPR-09-0025 CrossRefGoogle Scholar
  123. Yamaguchi T, Nakaoka H, Yamamoto K, Fujikawa T, Kim Y-I, Yano K, Haga S, Katayama K, Shibusawa T, Park SB, Maki K, Kimura R, Inoue I (2014) Genome-wide association study of degenerative bony changes of the temporomandibular joint. Oral Dis 20:409–415. doi: 10.1111/odi.12141 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dorota Ewa Kuczek
    • 1
  • Mie Linder Hübbe
    • 1
  • Daniel Hargbøl Madsen
    • 1
    • 2
    Email author
  1. 1.Department of Hematology, Tumor Stroma and Matrix Immunology Group, Center for Cancer Immune Therapy (CCIT)Copenhagen University HospitalHerlevDenmark
  2. 2.The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark

Personalised recommendations