Advertisement

Performance Comparison of Nodally Integrated Galerkin Meshfree Methods and Nodally Collocated Strong Form Meshfree Methods

  • M. Hillman
  • J. S. Chen
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 46)

Abstract

For a truly meshfree technique, Galerkin meshfree methods rely chiefly on nodal integration of the weak form. In the case of Strong Form Collocation meshfree methods, direct collocation at the nodes can be employed. In this paper, performance of these node-based Galerkin and collocation meshfree methods is compared in terms of accuracy, efficiency, and stability. Considering both accuracy and efficiency, the overall effectiveness in terms of CPU time versus error is also assessed. Based on the numerical experiments, nodally integrated Galerkin meshfree methods with smoothed gradients and variationally consistent integration yield the most effective solution technique, while direct collocation of the strong form at nodal locations has comparable effectiveness.

Keywords

Reproducing kernel particle method Reproducing kernel collocation method Quadrature Collocation Variational consistency 

References

  1. 1.
    J.S. Chen, C. Pan, C.-T. Wu, W.K. Liu, Reproducing Kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Eng. 139(1–4), 195–227 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J.-S. Chen, C. Pan, C.-T. Wu, Large deformation analysis of rubber based on a reproducing kernel particle method. Comput. Mech. 19(3), 211–227 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J.-S. Chen, C. Pan, C.M.O.L. Roque, H.-P. Wang, A Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech. 22(3), 289–307 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    P.C. Guan, J.S. Chen, Y. Wu, H. Teng, J. Gaidos, K. Hofstetter, M. Alsaleh, Semi-Lagrangian reproducing kernel formulation and application to modeling earth moving operations. Mech. Mater. 41(6), 670–683 (2009)CrossRefGoogle Scholar
  5. 5.
    S.-W. Chi, C.-H. Lee, J.-S. Chen, P.-C. Guan, A level set enhanced natural kernel contact algorithm for impact and penetration modeling. Int. J. Numer. Methods Eng. 102(3–4), 839–866 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Y. You, J.-S. Chen, H. Lu, Filters, reproducing kernel, and adaptive meshfree method. Comput. Mech. 31(3), 316–326 (2003)zbMATHGoogle Scholar
  7. 7.
    T. Rabczuk, T. Belytschko, Adaptivity for structured meshfree particle methods in 2D and 3D. Int. J. Numer. Methods Eng. 63(11), 1559–1582 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. Li, W.K. Liu, Meshfree and particle methods and their applications. Appl. Mech. Rev. 55(1), 1–34 (2002)CrossRefGoogle Scholar
  9. 9.
    J.S. Chen, M. Hillman, M. Rüter, An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int. J. Numer. Methods Eng. 95(5), 387–418 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    T. Belytschko, Y. Guo, W.K. Liu, S.P. Xiao, A unifieded stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48(9), 1359–1400 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37, April 1993, 229–256, (1994)Google Scholar
  12. 12.
    S.R. Beissel, T. Belytschko, Nodal integration of the element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 139, 49–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Bonet, S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int. J. Numer. Methods Eng. July 1998, 1189–1214, (2000)Google Scholar
  14. 14.
    J.-S. Chen, C.-T. Wu, S. Yoon, A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Eng. 207, February 2000, 435–466 (2001)Google Scholar
  15. 15.
    I. Babuška, U. Banerjee, J.E. Osborn, Q. Li, Quadrature for meshless methods. Int. J. Numer. Methods Eng. 76(9), 1434–1470 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S.N. Atluri, T.L. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput. Model. Simul. Eng. 3(3), 187–196 (1998)Google Scholar
  17. 17.
    M. Hillman, J.-S. Chen, S.-W. Chi, Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems. Comp. Part. Mech. 1, 245–256 (2014)CrossRefGoogle Scholar
  18. 18.
    C.-T. Wu, M. Koishi, W. Hu, A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method, Comput. Mech. (2015)Google Scholar
  19. 19.
    M. Hillman, J.S. Chen, An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int. J. Numer. Methods Eng. 107, 603–630 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    P.W. Randles, L.D. Libersky, Normalized SPH with stress points, Int. J. Numer. Methods Eng. 48, May 1999, 1445–1462 (2000)Google Scholar
  21. 21.
    T. Rabczuk, T. Belytschko, S.P. Xiao, Stable particle methods based on Lagrangian kernels. Comput. Methods Appl. Mech. Eng. 193(12–14), 1035–1063 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    T. Nagashima, Node-By-Node Meshless Approach and Its Applications to Structural Analyses, vol. 385, April 1997, pp. 2–3, (1999)Google Scholar
  23. 23.
    G.-R. Liu, G.Y. Zhang, Y.Y. Wang, Z.H. Zhong, G.Y. Li, X. Han, A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int. J. Solids Struct. 44(11–12), 3840–3860 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    J.-S. Chen, W. Hu, M.A. Puso, Y. Wu, X. Zhang, Strain smoothing for stabilization and regularization of galerkin meshfree methods. Lect. Notes Comput. Sci. Eng. 57, 57–75 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    D. Wang, J. Wu, An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput. Methods Appl. Mech. Eng. 298, 485–519 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E.J. Kansa, Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput. Math. with Appl. 19(8), 127–145 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    E. Oñate, S.R. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng. 39, December 1995, 3839–3866 (1996)Google Scholar
  28. 28.
    H.-Y. Hu, C.-K. Lai, J.-S. Chen, A study on convergence and complexity of reproducing kernel collocation method. Interact. Multiscale Mech. 2(3), 295–319 (2009)CrossRefGoogle Scholar
  29. 29.
    H.-Y. Hu, J.-S. Chen, W. Hu, Weighted radial basis collocation method for boundary value problems. Int. J. Numer. Methods Eng. 69(13), 2736–2757 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    H.-Y. Hu, J.-S. Chen, W. Hu, Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differ. Equ. 27(3), 554–580 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    S.-W. Chi, J.-S. Chen, H.-Y. Hu, J.P. Yang, A gradient reproducing kernel collocation method for boundary value problems. Int. J. Numer. Methods Eng. 93(13), 1381–1402 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods. Int. J. Numer. Methods Fluids. 20(8–9), 1081–1106 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    W.K. Liu, S. Li, T. Belytschko, Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput. Methods Appl. Mech. Eng. 143(1–2), 113–154 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Structural EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations