Oocytes pp 483-494 | Cite as

The Origin and Evolution of Maternal Genes

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 63)

Abstract

Proteins and RNA molecules are deposited into the developing egg by the mother. These gene products will drive the first stages of development and are coded by maternal genes. Maternal genes are essential, yet, despite their importance, their evolutionary dynamics is largely unknown. Here I review the current knowledge of maternal gene evolution. The evolutionary origin of maternal genes tends to be more recent than that of zygotic genes. Some studies support the theoretical prediction that maternal genes evolve faster than zygotic genes. However, most studies were done on a limited set of species and genes. I also discuss the way forward to understand the evolution of maternal genes by combining high-throughput genomics and theoretical evolutionary approaches.

Keywords

Maternal-effect Evolution Embryonic development Bicoid 

Abbreviations

mRNA

messenger RNA

Myr

Million years

UTR

Untranslated Region

References

  1. Abzhanov A, Kaufman TC (2000) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Dev Camb Engl 127:2239–2249Google Scholar
  2. Arbeitman MN, Furlong EEM, Imam F, Johnson E, Null BH, Baker BS, Krasnow MA, Scott MP, Davis RW, White KP (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297:2270–2275. doi:10.1126/science.1072152 CrossRefPubMedGoogle Scholar
  3. Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221. doi:10.1186/gb-2011-12-4-221 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barker MS, Demuth JP, Wade MJ (2005) Maternal expression relaxes constraint on innovation of the anterior determinant, bicoid. PLOS Genet 1:e57. doi:10.1371/journal.pgen.0010057 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Boycott AE, Diver C (1923) On the inheritance of sinistrality in limnaea peregra. Proc R Soc Lond B Biol Sci 95:207–213. doi:10.1098/rspb.1923.0033 CrossRefGoogle Scholar
  7. Briggs R, Green EU, King TJ (1951) An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking “functional” chromosomes. J Exp Zool 116:455–499. doi:10.1002/jez.1401160307 CrossRefPubMedGoogle Scholar
  8. Christians E (2011) Hsf1 knock-out. J Biol Chem 286:le26–le26. doi:10.1074/jbc.L111.221796 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christians E, Davis AA, Thomas SD, Benjamin IJ (2000) Maternal effect of Hsf1 on reproductive success. Nature 407:693–694. doi:10.1038/35037669 CrossRefPubMedGoogle Scholar
  10. Cruickshank T, Wade MJ (2008) Microevolutionary support for a developmental hourglass: gene expression patterns shape sequence variation and divergence in Drosophila. Evol Dev 10:583–590. doi:10.1111/j.1525-142X.2008.00273.x CrossRefPubMedGoogle Scholar
  11. Davis JC, Brandman O, Petrov DA (2005) Protein evolution in the context of Drosophila development. J Mol Evol 60:774–785. doi:10.1007/s00239-004-0241-2 CrossRefPubMedGoogle Scholar
  12. Dearden P, Akam M (1999) Developmental evolution: axial patterning in insects. Curr Biol 9:R591–R594CrossRefPubMedGoogle Scholar
  13. Dearden P, Grbic M, Falciani F, Akam M (2000) Maternal expression and early zygotic regulation of the Hox3/zen gene in the grasshopper Schistocerca gregaria. Evol Dev 2:261–270. doi:10.1046/j.1525-142x.2000.00065.x CrossRefPubMedGoogle Scholar
  14. Demuth JP, Wade MJ (2007) Maternal expression increases the rate of bicoid evolution by relaxing selective constraint. Genetica 129:37–43. doi:10.1007/s10709-006-0031-4 CrossRefPubMedGoogle Scholar
  15. Deshpande G, Calhoun G, Yanowitz JL, Schedl PD (1999) Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell 99:271–281CrossRefPubMedGoogle Scholar
  16. Ding S, Li X, Wang N, Cameron SL, Mao M, Wang Y, Xi Y, Yang D (2015) The phylogeny and evolutionary timescale of muscoidea (Diptera: Brachycera: Calyptratae) inferred from mitochondrial genomes. PloS One 10:e0134170. doi:10.1371/journal.pone.0134170 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  18. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392. doi:10.1038/358387a0 CrossRefPubMedGoogle Scholar
  19. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884. doi:10.1242/dev.00804 CrossRefPubMedGoogle Scholar
  20. Falconer D (1964) Maternal effects and selective responses. Proceedings of the XI International Congress on GeneticsGoogle Scholar
  21. Falconer DS (1981) Introduction to quantitative genetics. Longman, New YorkGoogle Scholar
  22. Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125. doi:10.1038/324120a0 CrossRefGoogle Scholar
  23. Hamatani T, Carter MG, Sharov AA, Ko MSH (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131CrossRefPubMedGoogle Scholar
  24. Jedlicka P, Mortin MA, Wu C (1997) Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J 16:2452–2462. doi:10.1093/emboj/16.9.2452 CrossRefPubMedPubMedCentralGoogle Scholar
  25. John LB, Yoong S, Ward AC (2009) Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. J Immunol 182:4792–4799. doi:10.4049/jimmunol.0802372 CrossRefPubMedGoogle Scholar
  26. Kanska J, Frank U (2013) New roles for Nanos in neural cell fate determination revealed by studies in a cnidarian. J Cell Sci 126:3192–3203. doi:10.1242/jcs.127233 CrossRefPubMedGoogle Scholar
  27. Kocabas AM, Crosby J, Ross PJ, Otu HH, Beyhan Z, Can H, Tam W-L, Rosa GJM, Halgren RG, Lim B, Fernandez E, Cibelli JB (2006) The transcriptome of human oocytes. Proc Natl Acad Sci 103:14027–14032. doi:10.1073/pnas.0603227103 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi:10.1093/nar/gkt1181 CrossRefPubMedGoogle Scholar
  29. Lawrence PA (1992) The making of a fly: the genetics of animal design. Blackwell Scientific, OxfordGoogle Scholar
  30. Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81. doi:10.1016/S0092-8674(04)00261-2 CrossRefPubMedGoogle Scholar
  31. Lee M, Choi Y, Kim K, Jin H, Lim J, Nguyen TA, Yang J, Jeong M, Giraldez AJ, Yang H, Patel DJ, Kim VN (2014) Adenylation of maternally inherited microRNAs by wispy. Mol Cell 56:696–707. doi:10.1016/j.molcel.2014.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Dev Camb Engl 137:859–870. doi:10.1242/dev.039487 Google Scholar
  33. Lim MYT, Okamura K (2017) Switches in Dicer activity during oogenesis and early development. In: Kloc M (ed) Oocytes: maternal information and functions. Springer, ChamGoogle Scholar
  34. Lipshitz HD (2009) Follow the mRNA: a new model for Bicoid gradient formation. Nat Rev Mol Cell Biol 10:509–512. doi:10.1038/nrm2730 CrossRefPubMedGoogle Scholar
  35. Liu MM, Davey JW, Jackson DJ, Blaxter ML, Davison A (2014) A conserved set of maternal genes? Insights from a molluscan transcriptome. Int J Dev Biol 58:501–511. doi:10.1387/ijdb.140121ad CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lott SE, Villalta JE, Zhou Q, Bachtrog D, Eisen MB (2014) Sex-specific embryonic gene expression in species with newly evolved sex chromosomes. PLoS Genet 10:e1004159. doi:10.1371/journal.pgen.1004159 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lynch JA, Roth S (2011) The evolution of dorsal–ventral patterning mechanisms in insects. Genes Dev 25:107–118. doi:10.1101/gad.2010711 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland, MAGoogle Scholar
  39. Lynch JA, Özüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the holometabola. PLOS Genet 7:e1002029. doi:10.1371/journal.pgen.1002029 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marco A (2014) Sex-biased expression of microRNAs in Drosophila melanogaster. Open Biol 4:140024. doi:10.1098/rsob.140024 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marco A (2015) Selection against maternal microRNA target sites in maternal transcripts. G3 5:2199–2207. doi:10.1534/g3.115.019497 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marco A (2017) Clearance of maternal RNAs: not a mummy’s embryo anymore. In: Lee K (ed) Zygotic genome activation: methods and protocols, Methods in molecular biology. Springer, New YorkGoogle Scholar
  43. Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S (2013) Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res 41:7745–7752. doi:10.1093/nar/gkt534 CrossRefPubMedPubMedCentralGoogle Scholar
  44. McGregor AP (2005) How to get ahead: the origin, evolution and function of bicoid. BioEssays News Rev Mol Cell Dev Biol 27:904–913. doi:10.1002/bies.20285 CrossRefGoogle Scholar
  45. McGregor A, Shaw P, Hancock J, Bopp D, Hediger M, Wratten N, Dover G (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 3(407):397CrossRefPubMedGoogle Scholar
  46. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528CrossRefPubMedGoogle Scholar
  47. Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol 210:591–602CrossRefPubMedGoogle Scholar
  48. Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, OxfordGoogle Scholar
  49. Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80:747–756CrossRefPubMedGoogle Scholar
  50. Ninova M, Ronshaugen M, Griffiths-Jones S (2014) Fast-evolving microRNAs are highly expressed in the early embryo of Drosophila virilis. RNA 20:360–372. doi:10.1261/rna.041657.113 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ninova M, Ronshaugen M, Griffiths-Jones S (2015) MicroRNA evolution, expression and function during short germband development in Tribolium castaneum. Genome Res. doi:10.1101/gr.193367.115
  52. Pinnell J, Lindeman PS, Colavito S, Lowe C, Savage RM (2006) The divergent roles of the segmentation gene hunchback. Integr Comp Biol 46:519–532. doi:10.1093/icb/icj054 CrossRefPubMedGoogle Scholar
  53. Preuss KM, Lopez JA, Colbourne JK, Wade MJ (2012) Identification of maternally-loaded RNA transcripts in unfertilized eggs of Tribolium castaneum. BMC Genomics 13:671. doi:10.1186/1471-2164-13-671 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Raff RA (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, ChicagoGoogle Scholar
  55. Renzis SD, Elemento O, Tavazoie S, Wieschaus EF (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLOS Biol 5:e117. doi:10.1371/journal.pbio.0050117 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ruan J, Li H, Chen Z, Coghlan A, Coin LJM, Guo Y, Heriche J-K, Hu Y, Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-Vidal A, Bolund L, Wang J, Durbin R (2007) TreeFam: 2008 update. Nucleic Acids Res 36:D735–D740. doi:10.1093/nar/gkm1005 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17:1850–1864. doi:10.1101/gr.6597907 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schoppmeier M, Schröder R (2005) Maternal torso signaling controls body axis elongation in a short germ insect. Curr Biol 15:2131–2136. doi:10.1016/j.cub.2005.10.036 CrossRefPubMedGoogle Scholar
  59. Shaw PJ, Salameh A, McGregor AP, Bala S, Dover GA (2001) Divergent structure and function of the bicoid gene in Muscoidea fly species. Evol Dev 3:251–262CrossRefPubMedGoogle Scholar
  60. Shen-Orr SS, Pilpel Y, Hunter CP (2010) Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode. Genome Biol 11:R58. doi:10.1186/gb-2010-11-6-r58 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Stauber M, Jäckle H, Schmidt-Ott U (1999) The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci USA 96:3786–3789CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sturtevant AH (1923) Inheritance of direction of coilling in Limnaea. Science 58:269–270. doi:10.1126/science.58.1501.269 CrossRefPubMedGoogle Scholar
  63. Tian X, Pascal G, Monget P (2009) Evolution and functional divergence of NLRPgenes in mammalian reproductive systems. BMC Evol Biol 9:202. doi:10.1186/1471-2148-9-202 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, Hartenstein V, Celniker SE, Rubin GM (2007) Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol 8:R145CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM (2000) Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 26:267–268. doi:10.1038/81547 CrossRefPubMedGoogle Scholar
  66. Tong Z-B, Bondy CA, Zhou J, Nelson LM (2002) A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum Reprod Oxf Engl 17:903–911CrossRefGoogle Scholar
  67. Toyama K (1914) On certain characteristics of the Silk-worm which are apparently non-Mendelian. Z Für Indukt Abstamm- Vererbungslehre 12:247–247. doi:10.1007/BF01837303 Google Scholar
  68. Votruba SM (2009) MicroRNAS in the Drosophila egg and early embryo. University of Toronto, CanadaGoogle Scholar
  69. Wade M (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New YorkGoogle Scholar
  70. Whitlock MC, Wade MJ (1995) Speciation: founder events and their effects on X-linked and autosomal genes. Am Nat 145:676–685. doi:10.1086/285762 CrossRefGoogle Scholar
  71. Wilson MJ, Dearden PK (2012) Pair-rule gene orthologues have unexpected maternal roles in the honeybee (Apis mellifera). PLoS One 7:e46490. doi:10.1371/journal.pone.0046490 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wolpert L, Smith J, Lawrence P, Robertson E, Meyerowitz E (2006) Principles of development. Oxford University Press, OxfordGoogle Scholar
  73. Wotton KR, Jiménez-Guri E, Crombach A, Janssens H, Alcaine-Colet A, Lemke S, Schmidt-Ott U, Jaeger J (2015a) Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. eLife 4:e04785. doi:10.7554/eLife.04785 CrossRefPubMedCentralGoogle Scholar
  74. Wotton KR, Jiménez-Guri E, Jaeger J (2015b) Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita. PLoS Genet 11:e1005042. doi:10.1371/journal.pgen.1005042 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wright S (1968) Evolution and the genetics of populations, Theory of gene frequencies, vol 2. University of Chicago Press, ChicagoGoogle Scholar
  76. Wright S (1984) Evolution and the genetics of populations, Experimental results and evolutionary deductions, vol 3. University of Chicago Press, ChicagoGoogle Scholar
  77. Zarzov P, Boucherie H, Mann C (1997) A yeast heat shock transcription factor (Hsf1) mutant is defective in both Hsc82/Hsp82 synthesis and spindle pole body duplication. J Cell Sci 110(Pt 16):1879–1891PubMedGoogle Scholar
  78. Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272:483–496. doi:10.1016/j.ydbio.2004.05.018 CrossRefPubMedGoogle Scholar
  79. Ziegler HE (1898) Experimentelle Studien über die Zelltheilung. Arch Für Entwicklungsmechanik Org 6:249–293. doi:10.1007/BF02152958 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EssexColchesterUK

Personalised recommendations