OpenFOAM® pp 437-453 | Cite as

Simulation of Particulate Fouling and its Influence on Friction Loss and Heat Transfer on Structured Surfaces using Phase-Changing Mechanism

  • Robert Kasper
  • Johann TurnowEmail author
  • Nikolai Kornev


Numerical simulations of particulate fouling using highly resolved Large-Eddy Simulations (LES) are carried out for a turbulent flow through a smooth channel with a single spherical dimple or square cavity (dimple depth/cavity depth to dimple diameter/cavity side length ratio of \(t/D = 0.261\)) at \(\text {Re}_D = 42{,}000\). Therefore, a new multiphase method for the prediction of particulate fouling on structured heat transfer surfaces is introduced into OpenFOAM® and further described. The proposed method is based on a combination of the Lagrangian Particle Tracking (LPT) and Eulerian approaches. Suspended particles are simulated according to their natural behavior by means of LPT as solid particles, whereas the carrier phase is simulated using the Eulerian approach. The first numerical results obtained from LES approve the capabilities of the proposed method and reveal a superior fouling performance of the spherical dimple due to asymmetric vortex structures, compared to the square cavity.



The authors would like to thank the German Research Foundation (DFG, grant KO 3394/10-1 and INST 264/113-1 FUGG) and the North-German Supercomputing Alliance (HLRN) for supporting this work.


  1. 1.
    P. Ligrani, International Journal of Rotating Machinery 2013, 32 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Mueller-Steinhagen, Heat Transfer Eng. 32, 1 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Sommerfeld, Particle Motion in Fluids - VDI Heat Atlas (Springer, 2010)Google Scholar
  4. 4.
    T.C. Crow, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles, 2nd edn. (CRC Press, Taylor & Francis, 2011)Google Scholar
  5. 5.
    A. Putnam, ARS Journal 31, 1467 (1961)Google Scholar
  6. 6.
    P.G. Saffman, J. Fluid Mech. 22, 385 (1965)CrossRefGoogle Scholar
  7. 7.
    P.G. Saffman, J. Fluid Mech. 31, 624 (1968)CrossRefGoogle Scholar
  8. 8.
    R. Mei, Int. J. Multiphase Flow 18, 145 (1992)CrossRefGoogle Scholar
  9. 9.
    F. Loeffler, W. Muhr, Chem. Ing. Tech. 44, 510 (1972)CrossRefGoogle Scholar
  10. 10.
    E. Heinl, M. Bohnet, Powder Technol. 159, 95 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Yoshizawa, K. Horiuti, J. Phys. Soc. Jpn. 54, 2834 (1985)CrossRefGoogle Scholar
  12. 12.
    W. Kim, S. Menon, in AIAA, Aerospace Sciences Meeting and Exhibit, 33 rd, Reno, NV (1995)Google Scholar
  13. 13.
    M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Phys. Fluids 3, 1760 (1991)CrossRefGoogle Scholar
  14. 14.
    R. Bloechl, H. Mueller-Steinhagen, The Canadian Journal of Chemical Engineering 68, 585 (1990)CrossRefGoogle Scholar
  15. 15.
    S. Wetchagarun, A numerical study of turbulent two-phase flows. Ph.D. thesis, University of Washington (2008)Google Scholar
  16. 16.
    V.I. Terekhov, S.V. Kalinina, Y.M. Mshvidobadse, Journal of Enhanced Heat Transfer 4, 131 (1997)CrossRefGoogle Scholar
  17. 17.
    J. Turnow, N. Kornev, S. Isaev, E. Hassel, Heat Mass Transfer. 47, 301 (2011)CrossRefGoogle Scholar
  18. 18.
    M.A. Elyyan, A. Rozati, D.K. Tafti, Int. J. Heat Mass Transfer 51, 2950 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chair of Modeling and SimulationUniversity of RostockRostockGermany

Personalised recommendations