Skip to main content

CAD-Based Parameterization for Adjoint Optimization

  • Chapter
  • First Online:
Book cover OpenFOAM®

Abstract

Manipulating CAD geometry using primitive components rather than the originating software is typically a challenging prospect. The parameterisation used to define the geometry of a model is often integral to the efficiency of the design. Even more crucial are the relations (constraints) between those parameters that do not allow the model to be under-defined. However, access to these parameters is lost when making the CAD model portable. Importing a standard CAD file gives access to the Boundary Representation (BRep) of the model and consequently its boundary surfaces which are usually trimmed patches. Therefore, in order to connect Adjoint optimization and Computational Fluid Dynamics to the industrial design framework (CAD) in a generic manner, the BRep must be used as a starting point to produce volume meshes and as a means of changing a model’s shape. In this study, emphasis is given firstly, to meshing (triangulation) of a BRep model as a precursor to volume meshing and secondly, to the use of techniques similar to Free Form Deformation for changing the model’s shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Han, J., Requicha, A.: Feature recognition from CAD models. IEEE Comput. Graph., 18(2), 80–94 (1998)

    Article  Google Scholar 

  2. Shah, J. J., Anderson, D., Kim, Y. S., Joshi, S.: A Discourse on Geometric Feature Recognition From CAD Models. J. Comput. Inf. Sci. Eng., 1(1), 41 (2001)

    Article  Google Scholar 

  3. Subrahmanyam, S., Wozny, M.: An overview of automatic feature recognition techniques for computer-aided process planning. Comput. Ind., 26(1), 1–21 (1995)

    Article  Google Scholar 

  4. Nowacki, H., Dannenberg, L.: Approximation Methods Used in the Exchange of Geometric Information via the VDA/VDMA Surface Interface. Product Data Interfaces in CAD/CAM Applications, 150–159 (1986)

    Google Scholar 

  5. https://www.opencascade.com/

  6. Mantyla, M. (1988). An introduction to solid modeling. Rockville, MD: Computer Science Press.

    Google Scholar 

  7. Stroud, I. (2006). Boundary representation modelling techniques. London: Springer.

    MATH  Google Scholar 

  8. TUM Department of Mechanical Engineering, Chair of Aerodynamics and Fluid mechanics. Retrieved from: www.aer.mw.tum.de/en/research-groups/automotive/drivaer

  9. Piegl, L., Tiller, W. (1997). The NURBS book. Berlin: Springer.

    Book  MATH  Google Scholar 

  10. Papadimitriou, D., Giannakoglou, K.: A continuous adjoint method with objective function derivatives based on boundary integrals, for inviscid and viscous flows. Comput. Fluids, 36(2), 325–341 (2007)

    Article  MATH  Google Scholar 

  11. Papoutsis-Kiachagias, E., Zymaris, A., Kavvadias, I., Papadimitriou, D., Giannakoglou, K.: The continuous adjoint approach to the k turbulence model for shape optimization and optimal active control of turbulent flows. Eng. Optimiz., 47(3), 370–389 (2014)

    Article  Google Scholar 

  12. Schberl, J.: NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, 1(1) 41–52 (1997)

    Article  MATH  Google Scholar 

  13. Meagher, D.: Geometric modeling using octree encoding. Comput. Vision Graph, 19(2), 129–147 (1982)

    Google Scholar 

  14. Isaac, T., Burstedde, C., Ghattas, O. (2012) : Low-Cost Parallel Algorithms for 2:1 Octree Balance. 2012 IEEE 26th International Parallel and Distributed Processing Symposium

    Google Scholar 

  15. Frey, P. J., George, P. L. (2008). Mesh generation: Application to finite elements. London: ISTE.

    Book  MATH  Google Scholar 

  16. Mavriplis, D. J.: An Advancing Front Delaunay Triangulation Algorithm Designed for Robustness. J. Comput. Phys., 117(1), 90–101 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tristano, J. R., Owen, S. J., Canann, S. A.: Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition (1998), https://doi.org/10.1.1.36.630

  18. Herrmann, L. R.: Laplacian-isoparametric grid generation scheme. J. Eng. Mech. Div-ASCE, 102(5), 749–756 (1976)

    Google Scholar 

  19. Cheng, S., Jin, J.: Edge Flips in Surface Meshes. Discrete Comput. Geom., 54(1), 110–151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Piegl, L., Tiller, W.: Parametrization for surface fitting in reverse engineering. Comput. Aided Design, 33(8), 593–603 (2001)

    Article  Google Scholar 

  21. Varady, T., Martin, R. R., Cox, J.: Reverse engineering of geometric modelsan introduction. Comput. Aided Design, 29(4), 255–268 (1997)

    Article  Google Scholar 

  22. Sederberg, T. W., Parry, S. R.: Free-form deformation of solid geometric models. Comp. Graph., 20(4), 151–160 (1986)

    Article  Google Scholar 

  23. Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 September (1988).

    Article  MATH  Google Scholar 

  24. Pironneau, O.: On optimum design in fluid mechanics. Journal of Fluid Mechanics 64(1), 97–110 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  25. Thvenin, D. and Janiga, G.: Optimization and Computational Fluid Dynamics. Springer Publishing Company, Incorporated, 1st edition, (2008)

    Book  Google Scholar 

  26. Giles, M. B., Duta, M. C., Mller, J.-D., and Pierce, N. A.: Algorithm developments for discrete adjoint methods, (2001).

    Google Scholar 

  27. Vishnampet, R., Bodony, D. J., and Freund, J. B.: A practical discrete-adjoint method for high-fidelity compressible turbulence simulations. J. Comput. Phys. 285(C), 173–192 March (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. Giannakoglou, K. C. and Papadimitriou, D. I.: Adjoint Methods for Shape Optimization, 79–108. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).

    MATH  Google Scholar 

  29. Giannakoglou, K. C., Papadimitriou, D. I., Papoutsis-Kiachagias, E. M., and Kavvadias, I. S.: Aerodynamic Shape Optimization Using Turbulent Adjoint And Robust Design in Fluid Mechanics, 289–309. Springer International Publishing, Cham (2015).

    MATH  Google Scholar 

  30. Othmer, C.: Implementation of a continuous adjoint for topology optimization of ducted flows, 2007 (2007).

    Google Scholar 

  31. Othmer, C.: A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. International Journal for Numerical Methods in Fluids 58(8), 861–877 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  32. Papoutsis-Kiachagias, E., Kyriacou, S., and Giannakoglou, K.: The continuous adjoint method for the design of hydraulic turbomachines. Computer Methods in Applied Mechanics and Engineering 278(Complete), 621–639 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  33. Martin, M. J., Andres, E., Lozano, C., Valero, E.: Volumetric b-splines shape parametrization for aerodynamic shape design. Aerosp. Sci. Techno., 37, 26–36 (2014)

    Article  Google Scholar 

  34. Yan, X., Su, X. G.: Linear Regression Analysis (2009), https://doi.org/10.1142/6986

Download references

Acknowledgements

The work shown here is part of the IODA (Industrial Optimal Design using Adjoint CFD) Project. Research topic: Intuitive interfaces for optimisation parameterisation, constraint definition and automated mesh-to-CAD conversion.

The project leading to this application, has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642959.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Damigos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Damigos, M., De Villiers, E. (2019). CAD-Based Parameterization for Adjoint Optimization. In: Nóbrega, J., Jasak, H. (eds) OpenFOAM® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics