On Combining Discretisation Parameters and Attribute Ranking for Selection of Decision Rules

  • Urszula Stańczyk
  • Beata ZieloskoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10313)


The paper describes research on filtering decision rules with continuous and discretised condition attributes while combining characteristics of these attributes returned from supervised discretisation with their ranking. Numbers of intervals required for partitioning of attributes values imposed their grouping into corresponding categories, and for each group separately ranking procedures with Relief algorithm were executed. Information about numbers of bins combined with ranking positions were next exploited for selection of rules induced within rough set approaches. Filtering rules was performed directly by their conditions, or by calculating defined measures based on attribute weights, returning shortened decision algorithms with at least the same or improved classification accuracy.


Rule filtering Decision rules Continuous attributes Supervised discretisation Attribute ranking CRSA DRSA 



In the research there was used RSES system, developed at the Institute of Mathematics, Warsaw University ( [4], 4eMka Software developed at the Laboratory of Intelligent Decision Support Systems, Poznań [24], and WEKA workbench [14]. The research was performed at the Silesian University of Technology, Gliwice, within the project BK/RAu2/2017, and at the University of Silesia, Sosnowiec, within the project “Methods of artificial intelligence in information systems”.


  1. 1.
    Argamon, S., Burns, K., Dubnov, S. (eds.): The Structure of Style: Algorithmic Approaches to Understanding Manner and Meaning. Springer, Berlin (2010). doi: 10.1007/978-3-642-12337-5CrossRefGoogle Scholar
  2. 2.
    Baron, G.: Comparison of cross-validation and test sets approaches to evaluation of classifiers in authorship attribution domain. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2016. CCIS, vol. 659, pp. 81–89. Springer, Cham (2016). doi: 10.1007/978-3-319-47217-1_9CrossRefGoogle Scholar
  3. 3.
    Baron, G., Harężlak, K.: On approaches to discretization of datasets used for evaluation of decision systems. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. SIST, vol. 57, pp. 149–159. Springer, Cham (2016). doi: 10.1007/978-3-319-39627-9_14CrossRefGoogle Scholar
  4. 4.
    Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005). doi: 10.1007/11427834_2CrossRefzbMATHGoogle Scholar
  5. 5.
    Błaszczyński, J., Greco, S., Słowiński, R.: Inductive discovery of laws using monotonic rules. Eng. Appl. Artif. Intell. 25, 284–294 (2012)CrossRefGoogle Scholar
  6. 6.
    Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  7. 7.
    Chikalov, I., Lozin, V., Lozina, I., Moshkov, M., Nguyen, H., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis - Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-28667-4CrossRefzbMATHGoogle Scholar
  8. 8.
    Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford (2004)Google Scholar
  9. 9.
    Cyran, K., Stanczyk, U.: Indiscernibility relation for continuous attributes: application in image recognition. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 726–735. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73451-2_76CrossRefGoogle Scholar
  10. 10.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning Proceedings 1995: Proceedings of the 12th International Conference on Machine Learning, pp. 194–202. Elsevier (1995)Google Scholar
  11. 11.
    Fayyad, U., Irani, K.: Multi-interval discretization of continuous valued attributes for classification learning. In: The 13th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1022–1027. Morgan Kaufmann Publishers (1993)Google Scholar
  12. 12.
    Greco, S., Matarazzo, B., Słowiński, R.: The use of rough sets and fuzzy sets in MCDM. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances in Multiple Criteria Decision Making, chap. 14, pp. 14.1–14.59. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  13. 13.
    Greco, S., Matarazzo, B., Słowiński, R.: Dominance-based rough set approach as a proper way of handling graduality in rough set theory. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 36–52. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71663-1_3CrossRefzbMATHGoogle Scholar
  14. 14.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  15. 15.
    Jockers, M., Witten, D.: A comparative study of machine learning methods for authorship attribution. Lit. Linguist. Comput. 25(2), 215–223 (2010)CrossRefGoogle Scholar
  16. 16.
    Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994). doi: 10.1007/3-540-57868-4_57CrossRefGoogle Scholar
  17. 17.
    Koppel, M., Schler, J., Argamon, S.: Computational methods in authorship attribution. J. Am. Soc. Inf. Sci. Technol. 60(1), 9–26 (2009)CrossRefGoogle Scholar
  18. 18.
    Kotsiantis, S., Kanellopoulos, D.: Discretization techniques: a recent survey. GESTS Int. Trans. Comput. Sci. Eng. 32(1), 47–58 (2006)Google Scholar
  19. 19.
    Michalak, M., Sikora, M., Wróbel, L.: Rule quality measures settings in a sequential covering rule induction algorithm - an empirical approach. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems. ACSIS-Annals of Computer Science and Information Systems, vol. 5, pp. 109–118 (2015)Google Scholar
  20. 20.
    Moshkov, M., Zielosko, B.: Combinatorial Machine Learning - A Rough Set Approach. Studies in Computational Intelligence, vol. 360. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20995-6CrossRefzbMATHGoogle Scholar
  21. 21.
    Pawlak, Z.: Rough sets and intelligent data analysis. Inf. Sci. 147, 1–12 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Peng, R., Hengartner, H.: Quantitative analysis of literary styles. Am. Stat. 56(3), 15–38 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 5–11. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73451-2_2CrossRefGoogle Scholar
  25. 25.
    Stańczyk, U.: Attribute ranking driven filtering of decision rules. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 217–224. Springer, Cham (2014). doi: 10.1007/978-3-319-08729-0_21CrossRefGoogle Scholar
  26. 26.
    Stańczyk, U.: RELIEF-based selection of decision rules. Procedia Comput. Sci. 35, 299–308 (2014)CrossRefGoogle Scholar
  27. 27.
    Stańczyk, U.: Measuring quality of decision rules through ranking of conditional attributes. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. SIST, vol. 56, pp. 269–279. Springer, Cham (2016). doi: 10.1007/978-3-319-39630-9_22CrossRefGoogle Scholar
  28. 28.
    Stańczyk, U.: Weighting and pruning of decision rules by attributes and attribute rankings. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2016. CCIS, vol. 659, pp. 106–114. Springer, Cham (2016). doi: 10.1007/978-3-319-47217-1_12CrossRefGoogle Scholar
  29. 29.
    Wróbel, L., Sikora, M., Michalak, M.: Rule quality measures settings in classification, regression and survival rule induction – an empirical approach. Fundam. Inform. 149, 419–449 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Computer ScienceUniversity of Silesia in KatowiceSosnowiecPoland

Personalised recommendations