Statistical Modeling for Improvement of Numerical-Model-Based Solar Radiation Forecasts

  • Marek Brabec
  • Krystof Eben
  • Emil Pelikan
  • Pavel Krc
  • Jaroslav Resler
  • Pavel Jurus
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 565)

Abstract

We first analyze some features of numerical weather predictions (NWP) for global solar radiation and notice that they are undersmooth. This finding opens a way to improvements via various smoothing strategies. Then we introduce a statistical modeling framework based on modern semiparametric regression. We use a numerical weather prediction (NWP) model output as one of the inputs for our statistical model. The statistical model is build on the modern regression formalism, utilizing nonparametric B-splines for nonlinear parts whose exact shape is unknown a priori (apart from physically motivated smoothness). Then we illustrate its abilities for systematic development of strategies for NWP calibration and further development. The results are useful both for practical forecasting and as a source of feedback for NWP modelers.

Keywords

Generalized additive model Numerical weather forecast model Global solar radiation Calibration Semiparametric modeling 

References

  1. 1.
    EPIA 2014: European Photovoltaic Industry Association. Global Market Outlook for Photovoltaics 2014–2018. http://www.cleanenergybusinesscouncil.com/site/resources/files/reports/EPIA_Global_Market_Outlook_for_Photovoltaics_2014-2018_-_Medium_Res.pdf
  2. 2.
    COST Action ES1002: Weather Intelligence for Renewable Energies. http://www.wire1002.ch/
  3. 3.
    Diagne, H.M., David, M., Lauret, P., Boland, J.: Solar irradiance forecasting: state-of-the-art and proposition for future developments for small-scale insular grids. In: Proceedings of the World Renewable Energy Forum 2012, Denver, USA (2012)Google Scholar
  4. 4.
    Paulescu, M., Paulescu, E., Gravila, P., Badescu, V.: Weather Modeling and Forecasting of PV System Operation. Springer, London (2013)CrossRefGoogle Scholar
  5. 5.
    Reikard, G.: Predicting solar radiation at high resolution: a comparison of time series forecasts. Sol. Energy 83, 342–349 (2009)CrossRefGoogle Scholar
  6. 6.
    Kumar, R., Aggarwal, R.D., Sharma, J.D.: New regression model to estimated global solar radiation using artificial neural network. Adv. Energy Eng. 1, 66–73 (2013)Google Scholar
  7. 7.
    Brabec, M., Paulescu, M., Badescu, V.: Tailored vs black-box models for forecasting hourly average solar irradiance. Sol. Energy 111, 320–331 (2015)CrossRefGoogle Scholar
  8. 8.
    Warner, T.T.: Weather Modeling and Forecasting of PV System Operation. Cambridge University Press, Cambridge (2011)Google Scholar
  9. 9.
    Mathiesen, P., Kleissl, J.: Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol. Energy 85, 967–977 (2011)CrossRefGoogle Scholar
  10. 10.
    Perez, R., Lorenz, E., Pelland, S., Beauharnois, M., Knowe, G.V., Hemker, K., Heinemann, D., Remund, J., et al.: Comparison of numerical weather prediction solar irradiance forecasts in the US Canada and Europe. Sol. Energy 94, 305–326 (2013)CrossRefGoogle Scholar
  11. 11.
    Glahn, B., Gilbert, K., Cosgrove, R., Ruth, D., Sheets, K.: The gridding of MOS. Weather Forecast. 24, 520–529 (2009)CrossRefGoogle Scholar
  12. 12.
    Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall/CRC Press, London (2004)MATHGoogle Scholar
  14. 14.
    Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, London (2006)MATHGoogle Scholar
  15. 15.
    R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  16. 16.
    The R-INLA project 2016. http://www.r-inla.org/

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Marek Brabec
    • 1
  • Krystof Eben
    • 1
  • Emil Pelikan
    • 1
  • Pavel Krc
    • 1
  • Jaroslav Resler
    • 1
  • Pavel Jurus
    • 1
  1. 1.Institute of Computer SciencePraha 8Czech Republic

Personalised recommendations