Advertisement

Cellular Automaton

Chapter
  • 1.1k Downloads
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

Cellular Automaton (CA) is widely used in land change modeling. In this technical note, we describe two CA: the Game of Life and the CA used in the software package DINAMICA EGO.

Keywords

Simulation Neighborhood effects Spatial patterns 

References

  1. Besussi E, Cecchini A, Rinaldi E (1998) The diffused city of the Italian north-east: identification of urban dynamics using cellular automata urban models. Comput Env Urban Syst 22(5):497–523Google Scholar
  2. Santé I, García AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban process: a review and analysis. Landscape and Urban Planning 96(2):108–122Google Scholar
  3. Soares-Filho BS, Coutinho Cerqueira G, Lopes Pennachin C (2002) DINAMICA–a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol Model 154:217–235Google Scholar
  4. Tobler WR (1979) Cellular geography. In: Gale S, Olsson G (eds) Philosophy in geography, pp 279–386Google Scholar
  5. White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environ Plann A 25(8):1175–1199Google Scholar
  6. Zhao Y, Murayama Y (2007) A constrained CA model to simulate Urban growth of the Tokyo metropolitan area. In: Proceedings of the 9th international conference on geocomputation, national centre for geocomputation, National University of Ireland, Maynooth Eire, 3–5 September 2007. http://www.geocomputation.org/2007/7B-Cellular_Automata/7B3.pdf

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de México (UNAM)MoreliaMexico
  2. 2.Centro de Sensoriamento RemotoUniversidade Federal de Minas Gerais, Belo Horizonte (UFMG)Belo HorizonteBrazil

Personalised recommendations