Integrating Econometric and Spatially Explicit Dynamic Models to Simulate Land Use Transitions in the Cerrado Biome

  • T. Carvalho Lima
  • S. Carvalho RibeiroEmail author
  • B. Soares-Filho
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Land use changes in Brazil have broad implications within environ-mental, socio-economic, and policy contexts. Despite extensive research on the topic, there are still significant gaps, namely in modeling the nature of drivers of land use change across Brazil’s large biomes. We aim to fill this gap by coupling econometric with spatially explicit models to explore future trends in land use change in the Cerrado biome. Cerrado savannas are considered a biodiversity hotspot, occupying 24% of Brazil’s territory. Nevertheless, the native vegetation in this region is under mounting pressure due to agricultural expansion. The econometric model we developed determines gross rates of deforestation and regrowth in each municipality within the Cerrado biome from 2002 to 2009. We used GEODA and agricultural Census data (IBGE 1995, 2006) to develop an auto-regression spatial model. This model was coupled with a spatially explicit model developed using Dinamica EGO software. Simulations from 2009 to 2050 resulted in a loss of 14.2 Mha of native vegetation and regrowth of 18.5 Mha, showing that complex land use dynamics are in place. Our results are in line with other studies that show lower probabilities of deforestation inside protected areas and indigenous lands. There is a high probability however of deforestation in some of the buffer zones around these protected areas, which must therefore be continuously monitored. We conclude that there is a need for a consistent monitoring framework, built upon the work of different governmental and non-governmental initiatives, in order to design and implement effective conservation actions in this important Brazilian biome.


Deforestation Land-use change Dinamica EGO Spatial lag regression 


  1. Aguiar APD, Vieira ICG, Assis TO, Dalla-Nora EL, Toledo PM, Oliveira Santos-Junior RA, Batistella M, Coelho AS, Savaget EK, Aragão LEOC, Nobre CA, Ometto JPH (2016) Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob Change BiolGoogle Scholar
  2. Basse RM, Omrani H, Charif O, Gerber P, Bódis K (2014) Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geogr 53:160–171CrossRefGoogle Scholar
  3. Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127CrossRefGoogle Scholar
  4. Bonham-Carter G (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford, UKGoogle Scholar
  5. Bürgi M, Hersperger AM, Schneeberger N (2005) Driving forces of landscape change–current and new directions. Landsc Ecol 19(8):857–868.Google Scholar
  6. Cunha A, Mueller CC, Alves E, Silva J (1994) Uma Avaliação da Sustentabilidade da Agriculturanos Cerrados. Brasília, IPEAGoogle Scholar
  7. Embrapa Cerrados (2008) IV Plano Diretor da Embrapa Cerrados 2008–2011–2023/Embrapa Cerrados–Planaltina, DF: Embrapa Cerrados 42 pGoogle Scholar
  8. Ferreira ME (2009) Modelagem da Paisagem do Cerrado. Universidade Federal de GoiásGoogle Scholar
  9. Grecchi RC, Gwyn QHJ, Bénié GB, Formaggio AR, Fahl FC (2014) Land use and land cover changes in the Brazilian Cerrado: a multidisciplinary approach to assess the impacts of agricultural expansion. Appl Geogr 55:300–312CrossRefGoogle Scholar
  10. IBGE (1995) Censo Agropecuario 1995/96. Rio de Janeiro, Brazil: IBGE. 1998. Accessed Feb 2017
  11. IBGE (2006) Censo Agropecuario 1995/96. Rio de Janeiro, Brazil: IBGE. Accessed Feb 2017
  12. Klink C, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713CrossRefGoogle Scholar
  13. Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118CrossRefGoogle Scholar
  14. Lambin EF, Meyfroidt P, Rueda X, Blackman A, Börner J, Cerutti PO, Dietsch T, Jungmann L, Lamarque P, Lister J, Walker NF, Wunder S (2014) Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob Environ Change 28:129–140CrossRefGoogle Scholar
  15. LAPIG (2012) Laboratório de Processamento de Imagens e Geoprocessamento do Instituto de Estudos Sócio-Ambientais. LAPIG-IESA. Disponívelem: Accessed Apr 2016
  16. Lawler JJ, Lewis DJ, Nelson E, Plantinga AJ, Polasky S, Withey JC, Helmers DP, Martinuzzi S, Pennington D, Radeloff VC (2014) Projected land-use change impacts on ecosystem services in the United States. Proc Natl Acad Sci 111:7492–7497CrossRefGoogle Scholar
  17. Le Sage JP, Pace RK (2009) Introduction to spatial econometrics. New York: Taylor & Francis Group, pp 321Google Scholar
  18. MMA/IBAMA/PNUD (2010) Relatório Técnico de Monitoramento de Desmatamento do Bioma Cerrado IBAMA. 2008 a 2009. Disponívelem:–2009.pdf
  19. Naudts K, Chen Y, McGrath MJ, Ryder J, Valade A, Otto J, Luyssaert S (2016) Europe’s forest management did not mitigate climate warming. Science 351:597–600CrossRefGoogle Scholar
  20. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW et al (2013) Essential biodiversity variables. Science 339:277–278CrossRefGoogle Scholar
  21. Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2:828–850CrossRefGoogle Scholar
  22. Skidmore AK, Pettorelli N, Coops NC, Geller GN, Hansen M, Lucas R, Mücher CA, O’Connor B, Paganini M, Pereira, HMM (2015) Environmental science: agree on biodiversity metrics to track from space. Nature 523Google Scholar
  23. Soares-Filho B et al (2013) OTIMIZAGRO: Uma Plataforma Integrada de Modelagem de Uso e Mudanças no Uso da Terra para o Brasil. Secretaria de Assuntos Estratégicos da Presidênciado Brasil. Tech, ReportGoogle Scholar
  24. Soares-Filho B et al (2006) Modeling conservation in the Amazon basin. Nature 440:520–523CrossRefGoogle Scholar
  25. Soares-Filho B, Rajão R, Merry F, Rodrigues H, Davis J, Lima L, Macedo, M, Coe M, Carneiro A, Santiago L (2016) Brazil’s Market for trading forest certificates. Plos One. doi: 10.1371/journal.pone.0152311 6 April 2016
  26. Soares B, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Dietzsch L, Merry F, Bowman M, Hissa L, Silvestrini R, Maretti C (2010) Role of Brazilian Amazon protected areas in climate change mitigation. P Natl Acad Sci USA 107:10821–10826CrossRefGoogle Scholar
  27. Soares B, Rajao R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A (2014) LAND USE cracking Brazil’s forest code. Science 344:363–364CrossRefGoogle Scholar
  28. Soares B, Rodrigues H, Follador M (2013) A hybrid analytical-heuristic method for calibrating land-use change models. Environ Model Softw 43:80–87CrossRefGoogle Scholar
  29. Soares Filho B, Alencar A, Nepstad D, Cerqueira G, Diaz M, Rivero S, Solorzanos L, Voll E (2004) Simulating the response of land-cover changes to roadpaving and governance along a major Amazon highway: the Santare´m–Cuiaba´corridor. Glob Chang Biolo 10Google Scholar
  30. Soares Filho B, Garcia RA, Rodrigues H, Moro S, Nepstad D (2008) Nexos entre as dimensõessocioeconômicas e o desmatamento da Amazônia: a caminho de um modelo integrado. In: Amazônia: Natureza e Sociedade em Transformação, p 304Google Scholar
  31. Soares Filho B, Rodrigues H, Costa,W (2009) Modeling environmental dynamics with dinamica ego. In: Soares Filho B. (ed) Guidebook. Belo Horizonte, Brazil. Accessed 20 Nov 2015
  32. Soares Filho B, Rodrigues H, Follador M (2013) A hybrid analytical-heuristic method for calibrating land-use change models. Environ Model Softw. doi: 10.1016/j.envsoft.2013.01.010 Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • T. Carvalho Lima
    • 1
  • S. Carvalho Ribeiro
    • 1
    Email author
  • B. Soares-Filho
    • 1
  1. 1.Centro de Sensoriamento RemotoUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations