Skip to main content

Hamilton–Jacobi–Bellman Equations

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2180))

Abstract

In this chapter we present recent developments in the theory of Hamilton–Jacobi–Bellman (HJB) equations as well as applications. The intention of this chapter is to exhibit novel methods and techniques introduced few years ago in order to solve long-standing questions in nonlinear optimal control theory of Ordinary Differential Equations (ODEs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abgrall, R.: Numerical discretization of the first-order Hamilton–Jacobi equation on triangular meshes. Commun. Pure Appl. Math. 49, 1339–1373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R.: Construction of simple, stable and convergent high order scheme for steady first order Hamilton-Jacobi equation. SIAM J. Sci. Comput. 31, 2419–2446 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achdou, Y., Barles, G., Ishii, H., Litvinov, G.L.: Hamilton–Jacobi Equations: Approximations, Numerical Analysis and Applications. Lecture Notes in Mathematics, vol. 2074. Springer/Fondazione C.I.M.E., Heidelberg/Florence (2013). Lecture Notes from the CIME Summer School held in Cetraro, August 29–September 3, 2011, Edited by Paola Loreti and Nicoletta Anna Tchou, Fondazione CIME/CIME Foundation Subseries

    Google Scholar 

  4. Achdou, Y., Camilli, F., Dolcetta, I.C.: Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50, 79–109 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Achdou, Y., Camilli, F., Dolcetta, I.C.: Mean field games: convergence of a finite difference method. SIAM J. Numer. Anal. 51(5), 2585–2612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Achdou, Y., Dolcetta, I.C.: Mean field games: numerical methods. SIAM J. Numer. Anal. 48–3, 1136–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Achdou, Y., Perez, V.: Iterative strategies for solving linearized discrete mean field games systems. Netw. Heterog. Media 7(2), 197–217 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Achdou, Y., Porretta, A.: Convergence of a finite difference scheme to weak solutions of the system of partial differential equation arising in mean field games. SIAM J. Numer. Anal. 54(1), 161–186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Allsopp, T., Mason, A., Philpott, A.: Optimising yacht routes under uncertainty. In: Proceedings of the 2000 Fall National Conference of the Operations Research Society of Japan, vol. 176, p. 183 (2000)

    Google Scholar 

  10. Altarovici, A., Bokanowski, O., Zidani, H.: A general Hamilton–Jacobi framework for nonlinear state-constrained control problems. ESAIM Control Optim. Calc. Var. 19(2), 337–357 (2012)

    Article  MATH  Google Scholar 

  11. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lecture notes in Mathematics ETH Zürich, 2nd edn. Birkhäuser, Bassel (2008)

    Google Scholar 

  12. Aubert, G., Kornprobst, P.: Partial differential equations and the calculus of variations. In: Mathematical Problems in Image Processing. Applied Mathematical Sciences, vol. 147, 2nd edn. Springer, New York (2006).

    Google Scholar 

  13. Aubin, J.P.: Viability solutions to structured Hamilton–Jacobi equations under constraints. SIAM J. Control Optim. 49, 1881–1915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, New York (1984)

    Book  MATH  Google Scholar 

  15. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  16. Aubin, J.P., Frankowska, H.: The viability kernel algorithm for computing value functions of infinite horizon optimal control problems. J. Math. Anal. Appl. 201, 555–576 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser, Boston (1997). With appendices by Maurizio Falcone and Pierpaolo Soravia

    Google Scholar 

  18. Bardi, M., Falcone, M.: An approximation scheme for the minimum time function. SIAM J. Control Optim. 28(4), 950–965 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barles, G.: Solutions de Viscosité des équatiuons de Hamilton–Jacobi. Mathematiques et Applications (Berlin), vol. 17. Springer, Paris (1994)

    Google Scholar 

  20. Barles, G., Souganidis, P.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Barnard, R.C., Wolenski, P.R.: Flow invariance on stratified domains. Set Valued Var. Anal. 21(2), 377–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Barron, E.N.: Viscosity solutions and analysis in l . In: Proceedings the NATO Advanced Study Institute, pp. 1–60 (1999)

    Google Scholar 

  23. Barron, E.N., Ishii, H.: The bellman equation for minimizing the maximum cost. Nonlinear Anal. Theor. 13(9), 1067–1090 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Benamou, J.D., Carlier, G.: Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167(1), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bokanowski, O., Cheng, Y., Shu, C.W.: A discontinuous Galerkin scheme for front propagation with obstacle. Numer. Math. 126(2), 1–31 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Bokanowski, O., Falcone, M., Ferretti, R., Grüne, L., Kalise, D., Zidani, H.: Value iteration convergence of ε-monotone schemes for stationary Hamilton-Jacobi equations. Discret. Continuous Dyn. Syst. Ser. A 35, 4041–4070 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton–Jacobi equations. SIAM J. Sci. Comput. 38(1), A171–A195 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bokanowski, O., Forcadel, N., Zidani, H.: Deterministic state-constrained optimal control problems without controllability assumptions. ESAIM Control Optim. Calc. Var. 17(04), 995–1015 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bokanowski, O., Picarelli, A., Zidani, H.: State constrained stochastic optimal control problems via reachability approach. SIAM J. Control Optim. 54(5), 2568–2593 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Breuß, M., Cristiani, E., Durou, J.D., Falcone, M., Vogel, O.: Perspective shape from shading: ambiguity analysis and numerical approximations. SIAM J. Imaging Sci. 5(1), 311–342 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. C., F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory, vol. 178. Springer, Berlin (1998)

    Google Scholar 

  34. Camilli, F., Falcone, M.: An approximation scheme for the optimal control of diffusion processes. RAIRO Modél. Math. Anal. Numér. 29(1), 97–122 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Camilli, F., Grüne, L.: Numerical approximation of the maximal solutions for a class of degenerate Hamilton–Jacobi equations. SIAM J. Numer. Anal. 38(5), 1540–1560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Camilli, F., Siconolfi, A.: Maximal subsolutions for a class of degenerate Hamilton–Jacobi problems. Indiana Univ. Math. J. 48(3), 1111–1131 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Camilli, F., Silva, F.J.: A semi-discrete in time approximation for a first order-finite mean field game problem. Netw. Heterog. Media 7(2), 263–277 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cannarsa, P., Scarinci, T.: Conjugate times and regularity of the minimum time function with differential inclusions. In: Analysis and Geometry in Control Theory and Its Applications. Springer INdAM Series, vol. 11, pp. 85–110. Springer, Cham (2015)

    Google Scholar 

  39. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and Their Applications. Birkauser, Boston (2004)

    MATH  Google Scholar 

  40. Capuzzo-Dolcetta, I., Lions, P.L.: Hamilton–Jacobi equations with state constraints. Trans. Am. Math. Soc. 318(2), 643–683 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cardaliaguet, P.: Notes on Mean Field Games: From P.-L. Lions’ lectures at Collège de France (2013)

    Google Scholar 

  42. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim 36, 21–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Numerical schemes for discontinuous value functions of optimal control. Set-Valued Anal. 8, 111–126 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  44. Carlini, E., Falcone, M., Ferretti, R.: An efficient algorithm for Hamilton-Jacobi equations in high dimension. Comput. Vis. Sci. 7(1), 15–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 27(3), 1071–1091 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Carlini, E., Silva, F.J.: On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications, arXiv preprint 1708.02042 (2017)

    Google Scholar 

  47. Carlini, E., Silva, F.J.: Semi-lagrangian schemes for mean field game models. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 3115–3120 (2013)

    Google Scholar 

  48. Carlini, E., Silva, F.J.: A fully discrete semi-lagrangian scheme for a first order mean field game problem. SIAM J. Numer. Anal. 52(1), 45–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Carlini, E., Silva, F.J.: A semi-lagrangian scheme for a degenerate second order mean field game system. Discrete. Continuous Dyn. Syst. 35(9), 4269–4292 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Clarke, F., Stern, R.: Hamilton–Jacobi characterization of the state constrained value. Nonlinear Anal. Theor. 61(5), 725–734 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems,. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  53. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton–Jacobi equations. Comput. Methods Appl. Mech. Eng. 195, 1344–1386 (1984)

    MATH  Google Scholar 

  54. Debrabant, K., Jakobsen, E.R.: Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comput. 82(283), 1433–1462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Dharmatti, S., Ramaswamy, M.: Hybrid control systems and viscosity solutions. SIAM J. Control Optim. 44(4), 1259–1288 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  56. Dolcetta, I.C.: On a discrete approximation of the Hamilton–Jacobi equation of dynamic programming. Appl. Math. Optim. 10, 367–377 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dolcetta, I.C., Ishii, H.: Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim. 11, 161–181 (1984)

    Article  MathSciNet  Google Scholar 

  58. Van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  59. Durou, J.D., Falcone, M., Sagona, M.: A survey of numerical methods for shape from shading. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

    Article  Google Scholar 

  60. Epstein, C.L., Gage, M.: The curve shortening flow. In: Wave motion: Theory, Modelling, and Computation (Berkeley, Calif., 1986). Mathematical Sciences Research Institute Publications, vol. 7, pp. 15–59. Springer, New York (1987)

    Google Scholar 

  61. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton–Jacobi–Bellman equations. Numer. Math. 67(3), 315–344 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  62. Falcone, M., Ferretti, R.: Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35(3), 909–940 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2013)

    Book  MATH  Google Scholar 

  64. Falcone, M., Giorgi, T., Loreti, P.: Level sets of viscosity solutions: some applications to fronts and rendez-vous problems. SIAM J. Appl. Math. 54, 1335–1354 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ferretti, R.: Convergence of semi-Lagrangian approximations to convex Hamilton–Jacobi equations under (very) large Courant numbers. SIAM J. Numer. Anal. 40(6), 2240–2253 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ferretti, R., Zidani, H.: Monotone numerical schemes and feedback construction for hybrid control systems. J. Optim. Theory Appl. 165(2), 507–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. Festa, A., Falcone, M.: An approximation scheme for an Eikonal equation with discontinuous coefficient. SIAM J. Numer. Anal. 52(1), 236–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Fjordholm, U.S.: High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. Ph.D. Thesis, ETH Zurich Switzerland (2013)

    Google Scholar 

  69. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50, 423–444 (2012)

    Article  MATH  Google Scholar 

  70. Frankowska, H., Mazzola, M.: Discontinuous solutions of Hamilton–Jacobi–Bellman equation under state constraints. Calc. Var. Partial Differ. Equ. 46(3–4), 725–747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Frankowska, H., Nguyen, L.: Local regularity of the minimum time function. J. Optim. Theory Appl. 164(1), 68–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Frankowska, H., Plaskacz, S.: Semicontinuous solutions of Hamilton–Jacobi–Bellman equations with degenerate state constraints. J. Math. Anal. Appl. 251(2), 818–838 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  73. Frankowska, H., Vinter, R.B.: Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems. J. Optim. Theory Appl. 104(1), 20–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge-Ampère partial differential equation. SIAM J. Numer. Anal. 51, 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  75. Gomes, D., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  77. Gozzi, F., Loreti, P.: Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. 37(4), 1195–1221 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  78. Guéant, O.: Mean field games equations with quadratic Hamiltonian: a specific approach. Math. Models Methods Appl. Sci. 22(9), 1250,022, 37 (2012)

    Google Scholar 

  79. Guéant, O.: New numerical methods for mean field games with quadratic costs. Netw. Heterog. Media 7, 315–336 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  80. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  81. Harten, A.: On a class of high resolution total-variation finite difference schemes. SIAM J. Numer. Anal. 21, 1–23 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  82. Harten, A., Engquist, B., Osher, S., Chakravarty, S.: Uniformly high order essentially non-oscillatory schemes. J. Comput. phys. 4, 231–303 (1987)

    Article  MATH  Google Scholar 

  83. Hermosilla, C., Zidani, H.: Infinite horizon problems on stratifiable state-constraints sets. J. Differ. Equ. 258(4), 1430–1460 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Horn, B.: Obtaining shape from shading information. In: The Psychology of Computer Vision, pp. 115–155. McGraw-Hill, New York (1975)

    Google Scholar 

  85. Ishii, H.: Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations. Indiana Univ. Math. J. 33(5), 721–748 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  86. Ishii, H., Koike, S.: A new formulation of state constraint problems for first-order PDEs. SIAM J. Control Optim. 34(2), 554–571 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  87. Ishii, H., Ramaswamy, M.: Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients. Commun. Partial Differ. Equ. 20(11–12), 2187–2213 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  88. Kaloshin, V.: A geometric proof of the existence of whitney stratifications. Mosc. Math. J 5(1), 125–133 (2005)

    MathSciNet  MATH  Google Scholar 

  89. Kurganov, A., Tadmor, E.: New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys. 160, 720–742 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  90. Kurzhanski, A.B., Mitchell, I.M., Varaiya, P.: Optimization techniques for state-constrained control and obstacle problems. J. Optim. Theory Appl. 128, 499–521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  91. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45, 1369–1394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  92. Lachapelle, A., Salomon, J., Turinici, G.: Computation of mean field equilibria in economics. Math. Mod. Meth. Appl. Sci. 20(4), 567–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  93. Lasry, J.M., Lions, P.L.: Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    Article  MATH  Google Scholar 

  94. Lasry, J.M., Lions, P.L.: Jeux à champ moyen II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343, 679–684 (2006)

    Article  MATH  Google Scholar 

  95. Lasry, J.M., Lions, P.L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  96. Leoni, G.: A First Course in Sobolev Spaces, vol. 105. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  97. Lepsky, O., Hu, C., Shu, C.W.: Analysis of the discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Num. Math. 33, 423–434 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  98. Li, F., Shu, C.W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett. 18(11), 1204–1209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  99. Lin, C.T., Tadmor, E.: L 1-stability and error estimates for approximate Hamilton-Jacobi solutions. Numer. Math. 87(4), 701–735 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  100. Lions, P.L.: Cours au Collège de France (2007–2008). www.college-de-france.fr

  101. Lions, P.L., Rouy, E., Tourin, A.: Shape-from-shading, viscosity solutions and edges. Numer. Math. 64(3), 323–353 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  102. Lions, P.L., Souganidis, P.E.: Convergence of MUSCL and filtered schemes for scalar conservation laws and Hamilton-Jacobi equations. Numer. Math. 69(4), 441–470 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  103. Loreti, P.: Some properties of constrained viscosity solutions of Hamilton–Jacobi–Bellman equations. SIAM J. Control Optim. 25, 1244–1252 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  104. Loreti, P., Tessitore, E.: Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations. J. Math. Syst. Estimation Control 4, 467–483 (1994)

    MathSciNet  MATH  Google Scholar 

  105. Lygeros, J.: On reachability and minimum cost optimal control. Automatica 40, 917–927 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  106. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35, 349–370 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  107. Margellos, K., Lygeros, J.: Hamilton-Jacobi formulation for reach-avoid differential games. IEEE Trans. Automat Control 56, 1849–1861 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  108. Motta, M.: On nonlinear optimal control problems with state constraints. SIAM J. Control Optim. 33(5), 1411–1424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  109. Motta, M., Rampazzo, F.: Multivalued dynamics on a closed domain with absorbing boundary. Applications to optimal control problems with integral constraints. Nonlinear Anal. 41, 631–647 (2000)

    MATH  Google Scholar 

  110. Nour, C., Stern, R.: The state constrained bilateral minimal time function. Nonlinear Anal. Theor. 69(10), 3549–3558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  111. Oberman, A.M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: a simple construction of convergent accurate difference schemes. J. Comput. Phys. 284, 367–388 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  112. Osher, S., Sethian, J.A.: Fronts propagation with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  113. Osher, S., Shu, C.W.: High order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 4, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  114. Rockafellar, R.T.: Proximal subgradients, marginal values, and augmented lagrangians in nonconvex optimization. Math. Oper. Res. 6(3), 424–436 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  115. Sahu, S.: High-order filtered scheme for front propagation problems. Bull. Braz. Math. Soc. 47(2), 727–744 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  116. Sethian, J.A.: Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J. Comput. Phys. 169(2), 503–555 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  117. Soner, H.: Optimal control with state-space constraint I. SIAM J. Control Optim. 24(3), 552–561 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  118. Soravia, P.: Estimates of convergence of fully discrete schemes for the Isaacs equation of pursuit-evasion differential games via maximum principle. SIAM J. Control Optim. 36(1), 1–11 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  119. Stern, R.: Characterization of the state constrained minimal time function. SIAM J. Control Optim. 43(2), 697–707 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  120. Wolenski, P., Zhuang, Y.: Proximal analysis and the minimal time function. SIAM J. Control Optim. 36(3), 1048–1072 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Festa .

Editor information

Editors and Affiliations

Appendix: Semi-Discrete in Time Approximation Revisited

Appendix: Semi-Discrete in Time Approximation Revisited

In this section we review the semi-discrete in time approximation studied in [37], summarized in Sect. 2.5.3, and we improve some of the results therein providing also a complete semi-discrete analysis of analogous results in [41, Sect. 4]. First let us recall that for \(w: \mathbb{R}^{n} \rightarrow \mathbb{R}\) the super-differential D + w(x) at \(x \in \mathbb{R}^{n}\) is defined as

$$\displaystyle{ D^{+}w(x):= \left \{p \in \mathbb{R}^{n}\;\ \limsup _{ y\rightarrow x}\frac{w(\,y) - w(x) -\langle \, p,y - x\rangle } {\vert y - x\vert } \leq 0\right \}. }$$
(2.243)

We collect in the following Lemmas some useful properties of semiconcave functions, i.e. functions that satisfy (2.225) (see [39] for a very complete account of this subject).

Lemma 1

For a function \(w: \mathbb{R}^{n} \rightarrow \mathbb{R}\) , the following assertions are equivalent:

  1. (i)

    The function w is semiconcave, with constant c.

  2. (ii)

    For all x, \(y \in \mathbb{R}^{n}\) and pD + w(x), qD + w( y)

    $$\displaystyle{ \langle q - p,y - x\rangle \leq c\vert x - y\vert ^{2}. }$$
    (2.244)
  3. (iii)

    Setting I n for the identity matrix, we have that ΔwcI n in the sense of distributions.

Lemma 2

Let \(w: \mathbb{R}^{n} \rightarrow \mathbb{R}\) be semiconcave. Then:

  1. (i)

    w is locally Lipschitz.

  2. (ii)

    If w n is a sequence of uniformly semiconcave functions (i.e. they share the same semiconcavity constant) converging pointwise to w, then the convergence is locally uniform andw n (⋅ ) → ∇w(⋅ ) a.e. in \(\mathbb{R}^{n}\).

2.1.1 Properties of the Semi-Discretization of the HJB Equation

Recall that given h > 0 and \(N \in \mathbb{N}\) such that Nh = T, we set t k : = kh for \(k = 0,\mathop{\ldots },N\). Let us define the following spaces:

$$\displaystyle{ \begin{array}{l} \mathcal{K}_{N}:= \left \{\mu = (\mu _{\ell})_{\ell=0}^{N}:\, \quad \mbox{ such that }\mu _{\ell} \in \mathcal{ P}_{1}(\mathbb{R}^{n})\quad \text{for all }\ell = 0,\ldots,N\right \}, \\ \mathcal{A}_{k}:= \left \{\alpha = (\alpha _{\ell})_{\ell=k}^{N-1}:\, \quad \mbox{ such that }\alpha _{\ell} \in \mathbb{R}^{n}\right \}\quad \text{for}\quad k = 0,\ldots,N - 1. \end{array} }$$

For \(\mu \in \mathcal{K}_{N}\) and \(k = 1,\mathop{\ldots },N\), we consider the following semi-discrete approximation of v[μ] in (2.212)

Classical arguments imply that \((\mathcal{CP})_{h}^{x,k}[\mu ]\) admits at least a solution for all (x, k). We denote by \(\mathcal{A}_{k}[\mu ](x) \subseteq \mathcal{A}_{k}\) the set of optimal solutions of \((\mathcal{CP})_{h}^{x,k}[\mu ]\), i.e. the set of discrete optimal controls. Note that v k [μ](x) can be equivalently defined with the discretized DPP (2.214). Recall also the extension v h [μ], defined in \(\mathbb{R}^{n} \times [0,T]\), of v k [μ](x) considered in (2.215). We have the following properties for v h [μ]:

Proposition 7

For all h > 0, we have:

  1. (i)

    For any t ∈ [0, T], the function v h [μ](⋅ , t) is Lipschitz continuous, with a Lipschitz constant c > 0 independent of (μ, h, k).

  2. (ii)

    For all t ∈ [0, T] the function v h [μ](⋅ , t) is semiconcave uniformly in (h, μ, t).

  3. (iii)

    There exists a constant c > 0 (independent of (μ, h, x, k)) such that

    $$\displaystyle{ \max _{\ell=k,\mathop{\ldots },N-1}\vert \alpha _{\ell}\vert \leq c\quad \mathit{\mbox{ for all }}\ \alpha \in \mathcal{A}_{k}[\mu ](x). }$$
  4. (iv)

    For all \(x \in \mathbb{R}^{n}\) , \(k = 0,\mathop{\ldots },N - 1\) and \(\alpha \in \mathcal{A}_{k}[\mu ](x)\) , we have

    $$\displaystyle{ \alpha _{\ell} + h\nabla F\left (X_{\ell}^{x,k}[\alpha ],\mu _{\ell}\right ) \in D^{+}v_{ h}[\mu ]\left (X_{\ell}^{x,k}[\alpha ],t_{\ell}\right )\quad \mathit{\mbox{ for }}\;\ell = k,\mathop{\ldots },N - 1. }$$
  5. (v)

    We have that v h [μ](⋅ , t) is differentiable at x iff for k = [th] there exists \(\alpha \in \mathcal{A}_{k}[\mu ](x)\) such that \(\mathcal{A}_{k}[\mu ](x) =\{\alpha \}\) . In that case, the following holds:

    $$\displaystyle{ \nabla v_{h}[\mu ](x,t) =\alpha _{k} + h\nabla F(x,\mu _{k}). }$$
  6. (vi)

    Given (x, t) and \(\alpha \in \mathcal{A}_{k}[\mu ](x)\) , with k = [th], we have that for all s ∈ [t k+1, T], the function v h [μ](⋅ , s) is differentiable at X x, k[α], with ℓ = [sh].

Proof

We only prove (iv) since the other statements are proved in [37]. For notational convenience, we omit the μ argument and we prove the result for = k, since for \(\ell= k + 1,\mathop{\ldots },N\) the assertion follows from (v)–(vi). Let \(x,y \in \mathbb{R}^{n}\) and τ ≥ 0. Since \(\alpha \in \mathcal{A}_{k}[\mu ](x)\), we have

$$\displaystyle{ v_{k}(x +\tau y) \leq \sum _{\ell=k}^{N-1}\left [\frac{1} {2}\vert \alpha _{\ell}\vert ^{2} + F\left (X_{\ell}^{x+\tau y,k}[\alpha ],\mu _{\ell}\right )\right ]h + G\left (X_{ N}^{x+\tau y,k}[\alpha ],\mu _{ N}\right ), }$$

with equality for τ = 0. Therefore,

$$\displaystyle{ \begin{array}{rcl} v_{k}(x +\tau y) - v_{k}(x)& \leq &h\sum _{\ell=k}^{N-1}\left [F\left (X_{\ell}^{x+\tau y,k}[\alpha ],\mu _{\ell}\right ) - F\left (X_{\ell}^{x,k}[\alpha ],\mu _{\ell}\right )\right ] \\ \ & \ & + G\left (X_{N}^{x+\tau y,k}[\alpha ],\mu _{N}\right ) - G\left (X_{\ell}^{x,k}[\alpha ],\mu _{N}\right ). \end{array} }$$
(2.245)

On the other hand, the optimality condition for α yields

$$\displaystyle{ \alpha _{k} = h\sum _{\ell=k+1}^{N-1}\nabla F\left (X_{\ell}^{x,k}[\alpha ],\mu _{\ell}\right ) + \nabla G\left (X_{\ell}^{x,k}[\alpha ],\mu _{ N}\right ). }$$

Combining with (2.245) and taking the limit as τ → 0, gives

$$\displaystyle{ \limsup _{\tau \rightarrow 0}\frac{v_{k}(x +\tau y) - v_{k}(x)} {\tau } -\langle \alpha _{k} + h\nabla F(x,\mu _{k}),y\rangle \leq 0, }$$

which, by Cannarsa and Sinestrari [39, Proposition 3.15 and Theorem 3.2.1], implies the result.

Given (x, k) and \(\alpha \in \mathcal{A}_{k}[\mu ](x)\) we set

$$\displaystyle{ \alpha _{k}[\mu ](x):=\alpha _{k}. }$$
(2.246)

Proposition 7(iv) implies that

$$\displaystyle{ \alpha _{k}[\mu ](x) \in D^{+}v_{ h}[\mu ](x,t_{k}) - h\nabla F(x,u_{k}). }$$
(2.247)

A straightforward computation shows that α k [μ](x) solves, for each (x, k), the problem defined in the r.h.s. of (2.214). Moreover, by Proposition 7(v)–(vi), the following relation holds true

$$\displaystyle{ \alpha _{\ell} =\alpha _{\ell}[\mu ]\left (X_{\ell}^{x,k}[\alpha ]\right )\quad \mbox{ for all }\;\;\;\ell = k,\mathop{\ldots },N - 1. }$$
(2.248)

2.1.2 Semi-Discretization of the Continuity Equation

Let \(\alpha ^{x,k}[\mu ] \in \mathcal{A}_{k}\) be a measurable selection of the multifunction \((x,k) \rightarrow \mathcal{A}_{k}[\mu ](x)\). Given this measurable selection, we set α k [μ](x) = α k x, k[μ], as in (2.246). By (2.247)– (2.248), there exists a measurable function \((x,k) \rightarrow p_{k}[\mu ](x) \in \mathbb{R}^{n}\) such that p k [μ](x) ∈ D + v k [μ](x) and for all time iterations \(\ell= k,\mathop{\ldots },N\) we have

$$\displaystyle{ \alpha _{\ell}[\mu ]\left (X_{\ell}^{x,k}[\alpha ^{x,k}[\mu ]]\right ) = p_{\ell}[\mu ]\left (X_{\ell}^{x,k}[\alpha ^{x,k}[\mu ]]\right ) - h\nabla F\left (X_{\ell}^{x,k}[\alpha ^{x,k}[\mu ]],\mu _{\ell}\right ). }$$
(2.249)

Moreover, Proposition 7(v)–(vi) implies that for \(\ell= k + 1,\mathop{\ldots },N\)

$$\displaystyle{ p_{\ell}[\mu ]\left (X_{\ell}^{x,k}[\alpha _{\ell}^{x,k}[\mu ]\right ) = \nabla v_{\ell}[\mu ]\left (X_{\ell}^{x,k}[\alpha _{\ell}^{x,k}[\mu ]]\right )\quad \mbox{ for all }x \in \mathbb{R}^{n} }$$
(2.250)

and

$$\displaystyle{ p_{k}[\mu ]\left (x\right ) = \nabla v_{k}[\mu ]\left (x\right )\quad \mbox{ for a.a. }x \in \mathbb{R}^{n}. }$$
(2.251)

Given (x, k 1), the discrete flow \(\varPhi _{k_{1},\cdot }[\mu ](x) \in \mathbb{R}^{(N-k)\times n}\) is defined as

$$\displaystyle{ \varPhi _{k_{1},k_{2}}[\mu ](x):= x - h\sum _{\ell=k_{1}}^{k_{2}-1}\alpha _{ \ell}^{x,k_{1} }[\mu ]\quad \mbox{ for all }k_{2} \geq k_{1}. }$$
(2.252)

Equivalently, by (2.249), for all k 1k 2k 3,

$$\displaystyle{ \begin{array}{rcl} \varPhi _{k_{1},k_{3}}[\mu ](x)&:=&x - h\sum _{\ell=k_{1}}^{k_{3}-1}\alpha _{\ell}[\mu ]\left (X_{\ell}^{x,k_{1}}[\alpha ^{x,k_{1}}[\mu ]]\right ), \\ \ & = &\varPhi _{k_{1},k_{2}}[\mu ](x) - h\sum _{\ell=k_{2}}^{k_{3}-1}\alpha _{\ell}[\mu ]\left (X_{\ell}^{x,k_{1}}[\alpha ^{x,k_{1}}[\mu ]]\right ).\end{array} }$$
(2.253)

In particular, for all k 1k 2,

$$\displaystyle{ \varPhi _{k_{1},k_{2}+1}[\mu ](x) =\varPhi _{k_{1},k_{2}}[\mu ](x) - h\alpha _{k_{2}}[\mu ]\left (\varPhi _{k_{1},k_{2}}[\mu ](x)\right ). }$$
(2.254)

The following result is an important improvement of [37, Lemma 3.6].

Proposition 8

There exists a constant c > 0 (independent of μ and small enough h) such that for all k = 1, , N and \(x,y \in \mathbb{R}^{n}\) we have

$$\displaystyle{ \vert \varPhi _{0,k}[\mu ](x) -\varPhi _{0,k}[\mu ](\,y)\vert \geq c\vert x - y\vert. }$$
(2.255)

Thus, Φ 0,k [μ](⋅ ) is invertible in \(\varPhi _{0,k}[\mu ](\mathbb{R}^{n})\) and the inverse Υ 0,k [μ](⋅ ) is 1∕c-Lipschitz.

Proof

For notational convenience, let us set Φ k = Φ 0,k [μ](x) and Ψ k = Φ 0,k [μ]( y). Expression (2.254) implies that

$$\displaystyle{ \left \vert \varPhi _{k+1} -\varPsi _{k+1}\right \vert ^{2} \geq \left \vert \varPhi _{ k} -\varPsi _{k}\right \vert ^{2} - 2h\left [\alpha _{ k}[\mu ](\varPhi _{k}) -\alpha _{k}[\mu ](\varPsi _{k})\right ] \cdot (\varPhi _{k} -\varPsi _{k}). }$$
(2.256)

By (2.249) we have (omitting the dependence on μ)

$$\displaystyle{ \alpha _{k}(\varPhi _{k}) -\alpha _{k}(\varPsi _{k}) = p_{k}(\varPhi _{k}) - p_{k}(\varPsi _{k}) - h\left [\nabla F(\varPhi _{k}) -\nabla F(\varPsi _{k})\right ]. }$$

Using the semiconcavity of v k [μ](⋅ ) and the fact that F has bounded second order derivatives w.r.t. x, Lemma 1(iii) gives

$$\displaystyle{ \left [\alpha _{k}(\varPhi _{k}) -\alpha _{k}(\varPsi _{k})\right ] \cdot (\varPhi _{k} -\varPsi _{k}) \leq c(1 + h)\left \vert \varPhi _{k} -\varPsi _{k}\right \vert ^{2}, }$$
(2.257)

for some c > 0. By (2.256) and (2.257), there is c > 0 (independent of h small enough) such that

$$\displaystyle{ \left \vert \varPhi _{k+1} -\varPsi _{k+1}\right \vert ^{2} \geq (1 - hc^{{\prime}})\left \vert \varPhi _{ k} -\varPsi _{k}\right \vert ^{2}. }$$

Therefore, for every k = 1, , N, we get

$$\displaystyle{ \left \vert \varPhi _{k+1} -\varPsi _{k+1}\right \vert ^{2} \geq (1 - hc^{{\prime}})^{k}\left \vert x - y\right \vert ^{2} \geq (1 - hc^{{\prime}})^{[T/h]}\left \vert x - y\right \vert ^{2}. }$$

and the result follows from the convergence of (1 − hc )[Th] to exp(−c T) as h ↓ 0.

As we already explained in Sect. 2.5.3, a natural semi-discretization of the solution m[μ] of (2.226) is obtained as the push-forward of m 0 under the discrete flow Φ 0,k [μ](⋅ ). For every \(k = 0,\mathop{\ldots },N\) set

$$\displaystyle{ m_{k}[\mu ]:=\varPhi _{0,k}[\mu ](\cdot )\sharp m_{0}. }$$
(2.258)

By (2.253) we have

$$\displaystyle{ m_{k}[\mu ] =\varPhi _{\ell,k}[\mu ](\cdot )\sharp m_{\ell}[\mu ]\quad \mbox{ for all }\ell = 1,\mathop{\ldots },k, }$$
(2.259)

In particular, for all \(\phi \in C_{b}(\mathbb{R}^{n})\) we have

$$\displaystyle{ \int _{\mathbb{R}^{n}}\phi (x)\mathrm{d}m_{k+1}[\mu ](x) =\int _{\mathbb{R}^{n}}\phi \left (x - h\alpha _{k}[\mu ](x)\right )\mathrm{d}m_{k}[\mu ](x), }$$
(2.260)

which applied with ϕ ≡ 1 gives \(m_{k}[\mu ](\mathbb{R}^{n}) = 1\) for \(k = 0,\mathop{\ldots },N\).

We have the following Lemma, which improves [37, Lemma 3.7] since we now prove, using Proposition 8, uniform bounds for the density of m k [μ]. Recall the distance d 1(μ, ν) between to probability measures with finite first order moments is defined in (2.209).

Lemma 3

There exists c > 0 (independent of (μ, h)) such that:

  1. (i)

    For all k 1, k 2 ∈ {1, , N}, we have that

    $$\displaystyle{ d_{1}(m_{k_{1}}[\mu ],m_{k_{2}}[\mu ]) \leq ch\vert k_{1} - k_{2}\vert = c\vert t_{k_{1}} - t_{k_{2}}\vert. }$$
    (2.261)
  2. (ii)

    For all k = 1, , N, m k [μ] is absolutely continuous (with density still denoted by m k [μ]), has a support in B(0, c) andm k [μ]∥ c.

Proof

By Proposition 7(iii) we have

$$\displaystyle{ \vert \varPhi _{0,k_{1}}[\mu ](x) -\varPhi _{0,k_{2}}[\mu ](x)\vert \leq ch\vert k_{1} - k_{2}\vert = c\vert t_{k_{1}} - t_{k_{2}}\vert. }$$
(2.262)

By definition of m k [μ](⋅ ), we have that for any 1-Lipschitz function \(\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}\)

$$\displaystyle{ \begin{array}{ll} \int _{\mathbb{R}^{n}}\phi (x)\,d\left [m_{k_{1}}[\mu ] - m_{k_{2}}[\mu ]\right ](x)& \leq \int _{\mathbb{R}^{n}}\vert \varPhi _{0,k_{1}}[\mu ](x) -\varPhi _{0,k_{2}}[\mu ](x)\vert \mathrm{d}m_{0}(x) \\ \ & \leq ch\vert k_{1} - k_{2}\vert = c\vert t_{k_{1}} - t_{k_{2}}\vert.\end{array} }$$

On the other hand, since by (H1) we have \(\mathop{\mathrm{supp}}(m_{0}) \subset B(0,c_{1})\), Proposition 7(iii) implies that \(\mathop{\mathrm{supp}}(m_{k}[\mu ])\) is contained in B(0, c ) for some c > 0. Moreover, for any Borel set A and k = 1, , N, Proposition 8 and the fact that ∥m 0 c imply the existence of c ′′ > 0 such that

$$\displaystyle{ m_{k}[\mu ](A) = m_{0}(\varUpsilon _{0,k}[\mu ](A)) \leq \| m_{0}\|_{\infty }\vert \varUpsilon _{0,k}(A)\vert \leq c^{{\prime\prime}}\vert A\vert, }$$

where | A | denotes the Lebesgue measure of the set A. Thus, m k [μ] is absolutely continuous and its density, still denoted by m k [μ], satisfies ∥m k [μ]∥ c ′′. The result easily follows.

Recall that m k [μ] is extended to an element m h [μ](⋅ ) of \(C([0,T];\mathcal{P}_{1}(\mathbb{R}^{n}))\) as in (2.221). The following result is a clear consequence of Lemma 3 and (2.221).

Proposition 9

There exists a constant c > 0 (independent of μ and small enough h ) such that:

  1. (i)

    For all t 1, t 2 ∈ [0, T], we have that

    $$\displaystyle{ d_{1}(m_{h}[\mu ](t_{1}),m_{h}[\mu ](t_{2})) \leq c\vert t_{1} - t_{2}\vert. }$$
    (2.263)
  2. (ii)

    For all t ∈ [0, T], m h [μ](t) is absolutely continuous (with density denoted by m h [μ](⋅ , t)), has a support in B(0, c) andm h [μ](⋅ , t)∥ c.

2.1.3 The Semi-Discrete Scheme for the First Order MFG Problem

Recall that the semidiscretization of the MFG problem (2.210) can be written as

$$\displaystyle{ \mbox{ Find }\mu \in C([0,T];\mathcal{P}_{1}(\mathbb{R}^{n}))\mbox{ such that }\;\mu = m_{ h}[\mu ]. }$$
(2.264)

The following result is proved in [37].

Theorem 12

Under our assumptions we have that  (2.264) admits at least one solution \(m_{h} \in \mathcal{K}_{N}\) . Moreover, if the following monotonicity conditions hold true

$$\displaystyle{ \begin{array}{l} \int _{\mathbb{R}^{n}}\left [F(x,m_{1}) - F(x,m_{2})\right ]\mathrm{d}[m_{1} - m_{2}](x) > 0\quad \mathit{\mbox{ for all }}\;m_{1}\neq m_{2} \in \mathcal{ P}_{1} \\ \int _{\mathbb{R}^{n}}\left [G(x,m_{1}) - G(x,m_{2})\right ]\mathrm{d}[m_{1} - m_{2}](x) > 0\quad \mathit{\mbox{ for all }}\,m_{1},m_{2} \in \mathcal{ P}_{1},\;m_{1}\neq m_{2}.\end{array} }$$
(2.265)

then the solution is unique.

Remark 5

The monotonicity assumption (2.265) has been proposed in [94] and is also a sufficient condition to guarantee the uniqueness of a solution of (2.210).

Now, let us prove the convergence of solutions m h of (2.264).

Theorem 13

Under our assumptions, as h ↓ 0 every limit point of m h in \(C([0,T];\mathcal{P}_{1})\) (there exists at least one) solves  (2.264). In particular, if  (2.265) holds true, we have that m h m (the unique solution of  (2.264)) in \(C([0,T];\mathcal{P}_{1})\) and in \(L^{\infty }\left (\mathbb{R}^{n} \times [0,T]\right )\) -weak-∗.

Proof

Proposition 9 and Ascoli Theorem imply that m h has at least one limit point \(\bar{m}\) in \(C([0,T];\mathcal{P}_{1})\) as h ↓ 0. Now, setting v h = v h [m h ] classical arguments (see e.g. [56, 57]) imply that \(v_{h} \rightarrow v[\bar{m}]\) uniformly on compact sets of \(\mathbb{R}^{n} \times (0,T)\), where \(v[\bar{m}]\) is the unique viscosity solution of (2.211) (with \(\mu =\bar{ m}\)).

In order to conclude the proof we have to show that \(\bar{m} = m[\bar{m}] =\varPhi [\bar{m}](0,t,\cdot )\sharp m_{0}\) (recall the notations introduced in Sect. 2.5.3). By Cardaliaguet [41, Sect. 4] there exists a set \(A \subseteq \mathbb{R}^{n}\), with \(\mathcal{L}^{n}(\mathbb{R}^{n}\setminus A) = 0\), such that

$$\displaystyle{ \mathcal{A}(x,0):=\{ \mbox{ the set of optimal controls for }v[\bar{m}](x,0)\}, }$$

is a singleton {α(x, 0)} for all xA. Proposition 7(iii) implies that the optimal controls \(\bar{\alpha }_{h}(x,\cdot )\), associated with v h (x, 0), are bounded in \(L^{\infty }([0,T]; \mathbb{R}^{n})\) (in particular they are bounded in \(L^{2}([0,T]; \mathbb{R}^{n})\)). Thus, up to subsequence, α h (x, ⋅ ) converges weakly in \(L^{2}([0,T); \mathbb{R}^{n})\) to some \(\bar{\alpha }(x,\cdot )\) and thus the flow Φ h (x, ⋅ ): = x 0 ⋅  α h (x, s)ds converge uniformly to some \(\bar{\varPhi }(x,\cdot ):= x -\int _{0}^{\cdot }\bar{\alpha }(x,s)\mathrm{d}s\). Now, since \(v_{h}(x,0) \rightarrow v[\bar{m}](x,0)\), by the uniqueness of the optimal control for xA, we obtain that \(\bar{\alpha }=\alpha (x,0)\). Using that m 0 has compact support, by the dominated convergence theorem, the convergence for xA of Φ h (x, ⋅ ) to \(\bar{\varPhi }(x,\cdot )\), which is the optimal trajectory for \(v[\bar{m}](x,0)\), the optimal yields that for every 1-Lipschitz \(\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}\) and t ∈ [0, T],

$$\displaystyle{ \int _{\mathbb{R}^{n}}\varphi (x)\mathrm{d}[m_{h}(t) - m[\bar{m}](t)](x) \leq \int _{\mathbb{R}^{n}}\vert \varPhi _{h}(x,t) -\bar{\varPhi } (x,t)\vert m_{0}(x)\mathrm{d}x \rightarrow 0\quad \mbox{ as }h \downarrow 0. }$$

Therefore \(\bar{m} = m[\bar{m}]\), which ends the proof. Finally, by Proposition 9(ii) we have that \(m_{h} \rightarrow \bar{ m}\) in \(L^{\infty }\left (\mathbb{R}^{n} \times [0,T]\right )\)-weak-∗. The result follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Festa, A. et al. (2017). Hamilton–Jacobi–Bellman Equations. In: Tonon, D., Aronna, M., Kalise, D. (eds) Optimal Control: Novel Directions and Applications. Lecture Notes in Mathematics, vol 2180. Springer, Cham. https://doi.org/10.1007/978-3-319-60771-9_2

Download citation

Publish with us

Policies and ethics