Mason C, Dunnill P (2008) A brief definition of regenerative medicine. Regen Med 3:1–5. doi:10.2217/17460751.3.1.1
CrossRef
PubMed
Google Scholar
Nikolich-Zugich J et al (2016) Preparing for an aging world: engaging biogerontologists, geriatricians, and the society. J Gerontol A Biol Sci Med Sci 71:435–444. doi:10.1093/gerona/glv164
CrossRef
PubMed
Google Scholar
Burt RK et al (2008) Clinical applications of blood-derived and marrow-derived stem cells for nonmalignant diseases. JAMA 299:925–936. doi:10.1001/jama.299.8.925
CAS
CrossRef
PubMed
Google Scholar
Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885. doi:10.1126/science.1110542
CAS
CrossRef
PubMed
Google Scholar
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156
CAS
CrossRef
PubMed
Google Scholar
Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147
CAS
CrossRef
PubMed
Google Scholar
Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222
CAS
CrossRef
PubMed
Google Scholar
Becker AJ, Mc CE, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454
CAS
CrossRef
PubMed
Google Scholar
Thomas ED (1999) A history of haemopoietic cell transplantation. Br J Haematol 105:330–339
CAS
CrossRef
PubMed
Google Scholar
Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245
CAS
CrossRef
PubMed
Google Scholar
Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–645. doi:10.1016/j.stem.2007.10.001
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–1864. doi:10.1101/gad.1674008
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7:271–283
CAS
PubMed
Google Scholar
Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133:1755–1760. doi:10.1053/j.gastro.2007.10.029
CAS
CrossRef
PubMed
Google Scholar
Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265. doi:10.1038/nature07935
CAS
CrossRef
PubMed
Google Scholar
Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. doi:10.1038/3305
CAS
CrossRef
PubMed
Google Scholar
Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Casarosa S, Bozzi Y, Conti L (2014) Neural stem cells: ready for therapeutic applications? Mol Cell Ther 2:31. doi:10.1186/2052-8426-2-31
CrossRef
PubMed
PubMed Central
Google Scholar
Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92. doi:10.1038/nrg3563
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019
CAS
CrossRef
PubMed
Google Scholar
International Stem Cell, I et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816. doi:10.1038/nbt1318
CrossRef
Google Scholar
Hentze H et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210. doi:10.1016/j.scr.2009.02.002
CrossRef
PubMed
Google Scholar
Damjanov I, Andrews PW (2016) Teratomas produced from human pluripotent stem cells xenografted into immunodeficient mice – a histopathology atlas. Int J Dev Biol 60:337–419. doi:10.1387/ijdb.160274id
CrossRef
PubMed
PubMed Central
Google Scholar
Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680. doi:10.1016/j.cell.2008.02.008
CAS
CrossRef
PubMed
Google Scholar
Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315. doi:10.1038/nbt1383
CAS
CrossRef
PubMed
Google Scholar
Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397
CAS
CrossRef
PubMed
Google Scholar
Williams LA, Davis-Dusenbery BN, Eggan KC (2012) SnapShot: directed differentiation of pluripotent stem cells. Cell 149:1174–1174 e1171. doi:10.1016/j.cell.2012.05.015
CAS
CrossRef
PubMed
Google Scholar
Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194–200. doi:10.1038/nrm.2016.10
CAS
CrossRef
PubMed
Google Scholar
Varma AK et al (2013) Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 38:895–905. doi:10.1007/s11064-013-0991-6
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477. doi:10.1093/brain/awn080
CAS
CrossRef
PubMed
Google Scholar
Faulkner J, Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 15:131–142. doi:10.1016/j.trim.2005.09.007
CAS
CrossRef
PubMed
Google Scholar
Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49:385–396. doi:10.1002/glia.20127
CrossRef
PubMed
Google Scholar
Yasuda A et al (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29:1983–1994. doi:10.1002/stem.767
CrossRef
PubMed
Google Scholar
All AH et al (2015) Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS One 10:e0116933. doi:10.1371/journal.pone.0116933
CrossRef
PubMed
PubMed Central
Google Scholar
Lebkowski J (2011) GRNOPC1: the world’s first embryonic stem cell-derived therapy. Interview with Jane Lebkowski. Regen Med 6:11–13. doi:10.2217/rme.11.77
CrossRef
PubMed
Google Scholar
Baker M (2011) Stem-cell pioneer bows out. Nature 479:459. doi:10.1038/479459a
CAS
CrossRef
PubMed
Google Scholar
de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9
CrossRef
PubMed
Google Scholar
Hely MA et al (1999) The sydney multicentre study of Parkinson’s disease: progression and mortality at 10 years. J Neurol Neurosurg Psychiatry 67:300–307
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Barker RA, Drouin-Ouellet J, Parmar M (2015) Cell-based therapies for Parkinson disease-past insights and future potential. Nat Rev Neurol 11:492–503. doi:10.1038/nrneurol.2015.123
CAS
CrossRef
PubMed
Google Scholar
Kefalopoulou Z et al (2014) Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 71:83–87. doi:10.1001/jamaneurol.2013.4749
CrossRef
PubMed
PubMed Central
Google Scholar
Kriks S et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551. doi:10.1038/nature10648
CAS
PubMed
PubMed Central
Google Scholar
Grealish S et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15:653–665. doi:10.1016/j.stem.2014.09.017
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Barker RA, Studer L, Cattaneo E, Takahashi J (2015) G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson’s disease. Npj Parkinson’s Disease 1:15017. doi:10.1038/npjparkd.2015.17
CrossRef
PubMed
PubMed Central
Google Scholar
Li W et al (2016) Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci U S A 113:6544–6549. doi:10.1073/pnas.1605245113
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Morizane A, Takahashi J (2016) Cell therapy for Parkinson’s disease. Neurol Med Chir (Tokyo) 56:102–109. doi:10.2176/nmc.ra.2015-0303
CrossRef
Google Scholar
Scudellari M (2016) How iPS cells changed the world. Nature 534:310–312. doi:10.1038/534310a
CrossRef
PubMed
Google Scholar
Barker RA et al (2016) Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinsons Dis 6:57–63. doi:10.3233/JPD-160798
CrossRef
PubMed
PubMed Central
Google Scholar
McKeown SJ, Stamp L, Hao MM, Young HM (2013) Hirschsprung disease: a developmental disorder of the enteric nervous system. Wiley Interdiscip Rev Dev Biol 2:113–129. doi:10.1002/wdev.57
CAS
CrossRef
PubMed
Google Scholar
Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366:64–73. doi:10.1016/j.ydbio.2012.01.012
CAS
CrossRef
PubMed
Google Scholar
Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305:G1–24. doi:10.1152/ajpgi.00452.2012
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Burns AJ et al (2016) White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 417:229–251. doi:10.1016/j.ydbio.2016.04.001
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Burns AJ, Thapar N (2014) Neural stem cell therapies for enteric nervous system disorders. Nat Rev Gastroenterol Hepatol 11:317–328. doi:10.1038/nrgastro.2013.226
CrossRef
PubMed
Google Scholar
Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V (2003) Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 130:6387–6400. doi:10.1242/dev.00857
CAS
CrossRef
PubMed
Google Scholar
Cooper JE et al (2016) In vivo transplantation of enteric neural crest cells into mouse gut; engraftment, functional integration and long-term safety. PLoS One 11:e0147989. doi:10.1371/journal.pone.0147989
CrossRef
PubMed
PubMed Central
Google Scholar
Fattahi F et al (2016) Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531:105–109. doi:10.1038/nature16951
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Workman MJ et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23:49–59. doi:10.1038/nm.4233
CAS
CrossRef
PubMed
Google Scholar
Xu B et al (2013) Non-linear elasticity of core/shell spun PGS/PLLA fibres and their effect on cell proliferation. Biomaterials 34:6306–6317. doi:10.1016/j.biomaterials.2013.05.009
CAS
CrossRef
PubMed
Google Scholar
Burridge PW et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11:855–860. doi:10.1038/nmeth.2999
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lippmann ES, Estevez-Silva MC, Ashton RS (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32:1032–1042. doi:10.1002/stem.1622
CAS
CrossRef
PubMed
Google Scholar
Bao X, Lian X, Palecek SP (2016) Directed endothelial progenitor differentiation from human pluripotent stem cells via Wnt activation under defined conditions. Methods Mol Biol 1481:183–196. doi:10.1007/978-1-4939-6393-5_17
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol 30:165–173. doi:10.1038/nbt.2107
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Jonsson MK et al (2012) Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol 52:998–1008. doi:10.1016/j.yjmcc.2012.02.002
CAS
CrossRef
PubMed
Google Scholar
van den Berg CW et al (2015) Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 142:3231–3238. doi:10.1242/dev.123810
CrossRef
PubMed
Google Scholar
Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR (2015) Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology 61:1370–1381. doi:10.1002/hep.27621
CAS
CrossRef
PubMed
Google Scholar
Hrvatin S et al (2014) Differentiated human stem cells resemble fetal, not adult, beta cells. Proc Natl Acad Sci U S A 111:3038–3043. doi:10.1073/pnas.1400709111
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Cornacchia D, Studer L (2017) Back and forth in time: directing age in iPSC-derived lineages. Brain Res 1656:14–26. doi:10.1016/j.brainres.2015.11.013
CAS
CrossRef
PubMed
Google Scholar
Wu H et al (2007) Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc Natl Acad Sci U S A 104:13821–13826. doi:10.1073/pnas.0706199104
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nishizawa M et al (2016) Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity. Cell Stem Cell 19:341–354. doi:10.1016/j.stem.2016.06.019
CAS
CrossRef
PubMed
Google Scholar
Gu E, Chen WY, Gu J, Burridge P, Wu JC (2012) Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2:335–345. doi:10.7150/thno.3666
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
van Laake LW, Passier R, Doevendans PA, Mummery CL (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010. doi:10.1161/CIRCRESAHA.108.175505
CrossRef
PubMed
Google Scholar
Zhang YW, Denham J, Thies RS (2006) Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Dev 15:943–952. doi:10.1089/scd.2006.15.943
CAS
CrossRef
PubMed
Google Scholar
Lui KO et al (2014) Tolerance induction to human stem cell transplants with extension to their differentiated progeny. Nat Commun 5:5629. doi:10.1038/ncomms6629
CAS
CrossRef
PubMed
Google Scholar
Figueiredo C, Blasczyk R (2015) A future with less HLA: potential clinical applications of HLA-universal cells. Tissue Antigens 85:443–449. doi:10.1111/tan.12564
CAS
CrossRef
PubMed
Google Scholar
Goldring CE et al (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8:618–628. doi:10.1016/j.stem.2011.05.012
CAS
CrossRef
PubMed
Google Scholar
Draper JS et al (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54. doi:10.1038/nbt922
CAS
CrossRef
PubMed
Google Scholar
Baker D et al (2016) Detecting genetic mosaicism in cultures of human pluripotent stem cells. Stem Cell Rep 7:998–1012. doi:10.1016/j.stemcr.2016.10.003
CAS
CrossRef
Google Scholar
Garber K (2015) RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol 33:890–891. doi:10.1038/nbt0915-890
CAS
CrossRef
PubMed
Google Scholar
Chakradhar S (2016) An eye to the future: researchers debate best path for stem cell-derived therapies. Nat Med 22:116–119. doi:10.1038/nm0216-116
CAS
CrossRef
PubMed
Google Scholar
Cyranoski D (2014) Japanese woman is first recipient of next-generation stem cells. Nature. doi:10.1038/nature.2014.15915