Skip to main content

Approaches for Identifying Novel Targets in Precision Medicine: Lessons from DNA Repair

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1007))

Abstract

Genome stability is maintained by a number of elegant mechanisms, which sense and repair damaged DNA. Germline defects that compromise genomic integrity result in cancer predisposition, exemplified by rare syndromes caused by mutations in certain DNA repair genes. These individuals often exhibit other symptoms including progeria and neurodegeneration. Paradoxically, some of these deleterious genetic alterations provide novel therapeutic opportunities to target cancer cells; an excellent example of such an approach being the recent development of poly (ADP-ribose) polymerase inhibitors as the first ‘synthetic lethal’ medicine for patients with BRCA-mutant cancers. The therapeutic exploitation of synthetic lethal interactions has enabled a novel approach to personalised medicine based on continued molecular profiling of patient and tumour material. This profiling may also aid clinicians in the identification of specific drug resistance mechanisms following relapse, and enable appropriate modification of the therapeutic regimen. This chapter focuses on therapeutic strategies designed to target aspects of the DNA damage response, and examines emerging themes demonstrating mechanistic overlap between DNA repair and neurodegeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gu G, Dustin D, Fuqua SA (2016) Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr Opin Pharmacol 31:97–103. doi:10.1016/j.coph.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  2. Kassouf E, Tabchi S, Tehfe M (2016) Anti-EGFR therapy for metastatic colorectal cancer in the era of extended RAS gene mutational analysis. BioDrugs 30:95–104. doi:10.1007/s40259-016-0166-5

    Article  CAS  PubMed  Google Scholar 

  3. Boespflug A, Thomas L (2016) Cobimetinib and vemurafenib for the treatment of melanoma. Expert Opin Pharmacother 17:1005–1011. doi:10.1517/14656566.2016.1168806

    Article  PubMed  Google Scholar 

  4. Cerrato A, Morra F, Celetti A (2016) Use of poly ADP-ribose polymerase [PARP ] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res 35:179. doi:10.1186/s13046-016-0456-2

  5. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL Bohr VA (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med 5, doi:10.1101/cshperspect.a025130

  6. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510. doi:10.1016/j.molcel.2012.07.029

    Article  CAS  PubMed  Google Scholar 

  7. Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993. doi:10.1007/s00018-009-8736-z

    Article  CAS  PubMed  Google Scholar 

  8. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing . Nat Rev Mol Cell Biol 15:465–481. doi:10.1038/nrm3822

  9. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98. doi:10.1038/cr.2007.115

    Article  CAS  PubMed  Google Scholar 

  10. Ceccaldi R, Sarangi P, D'Andrea AD (2016) The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17:337–349. doi:10.1038/nrm.2016.48

    Article  CAS  PubMed  Google Scholar 

  11. Pierce AJ et al (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11:S52–S59

    Article  CAS  PubMed  Google Scholar 

  12. Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131–142

    Article  CAS  PubMed  Google Scholar 

  13. Soubeyrand S et al (2006) Artemis phosphorylated by DNA-dependent protein kinase associates preferentially with discrete regions of chromatin. J Mol Biol 358:1200–1211. doi:10.1016/j.jmb.2006.02.061

    Article  CAS  PubMed  Google Scholar 

  14. Lee JH, Paull TT (2005) ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554. doi:10.1126/science.1108297

    Article  CAS  PubMed  Google Scholar 

  15. Shibata A et al (2014) DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–18. doi:10.1016/j.molcel.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  16. Thorslund T et al (2010) The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat Struct Mol Biol 17:1263–1265. doi:10.1038/nsmb.1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Escribano-Diaz C et al (2013) A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49:872–883. doi:10.1016/j.molcel.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  18. Thompson D et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822. doi:10.1093/jnci/dji141

    Article  CAS  PubMed  Google Scholar 

  19. Song H et al (2015) Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 33:2901–2907. doi:10.1200/JCO.2015.61.2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Donigan KA, Hile SE, Eckert KA, Sweasy JB (2012) The human gastric cancer-associated DNA polymerase beta variant D160N is a mutator that induces cellular transformation. DNA Repair (Amst) 11:381–390. doi:10.1016/j.dnarep.2012.01.004

    Article  CAS  Google Scholar 

  21. Schild D, Wiese C (2010) Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability. Nucleic Acids Res 38:1061–1070. doi:10.1093/nar/gkp1063

    Article  CAS  PubMed  Google Scholar 

  22. Patil AA et al (2014) FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents. Oncotarget 5:6414–6424. doi:10.18632/oncotarget.2225

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brown JS, O’Carrigan B, Jackson SP, Yap TA (2017) Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov 7:20–37. doi:10.1158/2159-8290.CD-16-0860

  24. Boyer AS, Walter D, Sorensen CS (2016) DNA replication and cancer: from dysfunctional replication origin activities to therapeutic opportunities. Semin Cancer Biol 37-38:16–25. doi:10.1016/j.semcancer.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  25. Sarkaria JN et al (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59:4375–4382

    CAS  PubMed  Google Scholar 

  26. Hickson I et al (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159. doi:10.1158/0008-5472.CAN-04-2727

    Article  CAS  PubMed  Google Scholar 

  27. Biddlestone-Thorpe L et al (2013) ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res 19:3189–3200. doi:10.1158/1078-0432.CCR-12-3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rainey MD, Charlton ME, Stanton RV, Kastan MB (2008) Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 68:7466–7474. doi:10.1158/0008-5472.CAN-08-0763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Batey MA et al (2013) Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther 12:959–967. doi:10.1158/1535-7163.MCT-12-0707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9. doi:10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andrs M et al (2016) Small molecules targeting ataxia telangiectasia and Rad3-related (ATR) kinase: an emerging way to enhance existing cancer therapy. Curr Cancer Drug Targets 16:200–208

    Article  CAS  PubMed  Google Scholar 

  32. Charrier JD et al (2011) Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem 54:2320–2330. doi:10.1021/jm101488z

    Article  CAS  PubMed  Google Scholar 

  33. Reaper PM et al (2011) Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 7:428–430. doi:10.1038/nchembio.573

    Article  CAS  PubMed  Google Scholar 

  34. Fokas E et al (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3:e441. doi:10.1038/cddis.2012.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall AB et al (2014) Potentiation of tumor responses to DNA damaging therapy by the selective ATR inhibitor VX-970. Oncotarget 5:5674–5685. doi:10.18632/oncotarget.2158

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kwok M et al (2016) ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127:582–595. doi:10.1182/blood-2015-05-644872

  37. Turenne GA, Paul P, Laflair L, Price BD (2001) Activation of p53 transcriptional activity requires ATM’s kinase domain and multiple N-terminal serine residues of p53. Oncogene 20:5100–5110. doi:10.1038/sj.onc.1204665

    Article  CAS  PubMed  Google Scholar 

  38. Sultana R et al (2013) Ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibition is synthetically lethal in XRCC1 deficient ovarian cancer cells. PLoS One 8:e57098. doi:10.1371/journal.pone.0057098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohni KN, Kavanaugh GM, Cortez D (2014) ATR pathway inhibition is synthetically lethal in cancer cells with ERCC1 deficiency. Cancer Res 74:2835–2845. doi:10.1158/0008-5472.CAN-13-3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hocke S et al (2016) A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers. Oncotarget 7:7080–7095. doi:10.18632/oncotarget.6857

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bellido F et al (2016) POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance. Genet Med 18:325–332. doi:10.1038/gim.2015.75

    Article  CAS  PubMed  Google Scholar 

  42. Church DN et al (2013) DNA polymerase epsilon and delta exonuclease domain mutations in endometrial cancer. Hum Mol Genet 22:2820–2828. doi:10.1093/hmg/ddt131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Menezes DL et al (2015) A synthetic lethal screen reveals enhanced sensitivity to ATR inhibitor treatment in mantle cell lymphoma with ATM loss-of-function. Mol Cancer Res 13:120–129. doi:10.1158/1541-7786.MCR-14-0240

    Article  CAS  PubMed  Google Scholar 

  44. Sanjiv K et al (2016) Cancer-specific synthetic lethality between ATR and CHK1 kinase activities. Cell Rep 17:3407–3416. doi:10.1016/j.celrep.2016.12.031

  45. Bryant HE et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917. doi:10.1038/nature03443

    Article  CAS  PubMed  Google Scholar 

  46. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F (2014) Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 329:18–25. doi:10.1016/j.yexcr.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  47. Rubinstein WS (2008) Hereditary breast cancer: pathobiology, clinical translation, and potential for targeted cancer therapeutics. Familial Cancer 7:83–89. doi:10.1007/s10689-007-9147-7

    Article  PubMed  Google Scholar 

  48. Kolinjivadi AM et al (2017) Moonlighting at replication forks: a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. doi:10.1002/1873-3468.12556

  49. Bryant HE et al (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28:2601–2615. doi:10.1038/emboj.2009.206

  50. Murai J et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599. doi:10.1158/0008-5472.CAN-12-2753

  51. Ray Chaudhuri A et al (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382–387. doi:10.1038/nature18325

    Article  PubMed  Google Scholar 

  52. Fong PC et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134. doi:10.1056/NEJMoa0900212

    Article  CAS  PubMed  Google Scholar 

  53. Tutt A et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244. doi:10.1016/S0140-6736(10)60892-6

    Article  CAS  PubMed  Google Scholar 

  54. Audeh MW et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251. doi:10.1016/S0140-6736(10)60893-8

    Article  CAS  PubMed  Google Scholar 

  55. Sandhu SK et al (2013) Poly (ADP-ribose) polymerase (PARP ) inhibitors for the treatment of advanced germline BRCA2 mutant prostate cancer. Ann Oncol 24:1416–1418. doi:10.1093/annonc/mdt074

  56. Ledermann J et al (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366:1382–1392. doi:10.1056/NEJMoa1105535

    Article  CAS  PubMed  Google Scholar 

  57. Ledermann J et al (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15:852–861. doi:10.1016/S1470-2045(14)70228-1

    Article  CAS  PubMed  Google Scholar 

  58. Andrei AZ et al (2015) Increased in vitro and in vivo sensitivity of BRCA2-associated pancreatic cancer to the poly(ADP-ribose) polymerase-1/2 inhibitor BMN 673. Cancer Lett 364:8–16. doi:10.1016/j.canlet.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  59. Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY (2006) Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 6:212. doi:10.1186/1471-2407-6-212

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wiley A et al (2006) Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer 107:299–308. doi:10.1002/cncr.21992

    Article  CAS  PubMed  Google Scholar 

  61. Lim SL et al (2008) Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer 98:1452–1456. doi:10.1038/sj.bjc.6604325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patch AM et al (2015) Whole-genome characterization of chemoresistant ovarian cancer. Nature 521:489–494. doi:10.1038/nature14410

    Article  CAS  PubMed  Google Scholar 

  63. Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757–766

    Article  CAS  PubMed  Google Scholar 

  64. O’Donnell RL et al (2016) Advanced ovarian cancer displays functional intratumor heterogeneity that correlates to ex vivo drug sensitivity. Int J Gynecol Cancer 26:1004–1011. doi:10.1097/IGC.0000000000000745

    Article  PubMed  Google Scholar 

  65. Gottipati P et al (2010) Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res 70:5389–5398. doi:10.1158/0008-5472.CAN-09-4716

    Article  CAS  PubMed  Google Scholar 

  66. Zaremba T et al (2011) Poly(ADP-ribose) polymerase-1 (PARP -1) pharmacogenetics, activity and expression analysis in cancer patients and healthy volunteers. Biochem J 436:671–679. doi:10.1042/BJ20101723

  67. Mateo J et al (2015) DNA-repair defects and Olaparib in metastatic prostate cancer. N Engl J Med 373:1697–1708. doi:10.1056/NEJMoa1506859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Telli ML et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22:3764–3773. doi:10.1158/1078-0432.CCR-15-2477

    Article  CAS  PubMed  Google Scholar 

  69. Swisher EM et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75–87. doi:10.1016/S1470-2045(16)30559-9

    Article  CAS  PubMed  Google Scholar 

  70. Hong R et al (2016) 53BP1 depletion causes PARP inhibitor resistance in ATM-deficient breast cancer cells. BMC Cancer 16:725. doi:10.1186/s12885-016-2754-7

  71. Xu G et al (2015) REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521:541–544. doi:10.1038/nature14328

  72. Watanabe S et al (2013) JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks. Nat Struct Mol Biol 20:1425–1433. doi:10.1038/nsmb.2702

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz S et al (2016) A genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors. Mol Cell 62:307–313. doi:10.1016/j.molcel.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160. doi:10.1038/nature13600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rytelewski M et al (2016) Reciprocal positive selection for weakness – preventing olaparib resistance by inhibiting BRCA2. Oncotarget 7:20825–20839. doi:10.18632/oncotarget.7883

    Article  PubMed  PubMed Central  Google Scholar 

  76. Savitsky K et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753

    Article  CAS  PubMed  Google Scholar 

  77. Boder E, Sedgwick RP (1958) Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 21:526–554

    CAS  PubMed  Google Scholar 

  78. Yu CE et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  CAS  PubMed  Google Scholar 

  79. Oshima J, Sidorova JM, Monnat RJ Jr (2017) Werner syndrome: clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 33:105–114. doi:10.1016/j.arr.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  80. Agrelo R et al (2006) Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc Natl Acad Sci U S A 103:8822–8827. doi:10.1073/pnas.0600645103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lehmann AR, McGibbon D, Stefanini M (2011) Xeroderma pigmentosum. Orphanet J Rare Dis 6:70. doi:10.1186/1750-1172-6-70

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reynolds JJ, Stewart GS (2013) A single strand that links multiple neuropathologies in human disease. Brain 136:14–27. doi:10.1093/brain/aws310

    Article  PubMed  Google Scholar 

  83. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW (2003) A requirement for PARP -1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res 31:5526–5533

    Google Scholar 

  84. El-Khamisy SF et al (2005) Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434:108–113. doi:10.1038/nature03314

    Article  CAS  PubMed  Google Scholar 

  85. Hirano M et al (2007) DNA single-strand break repair is impaired in aprataxin-related ataxia. Ann Neurol 61:162–174. doi:10.1002/ana.21078

    Article  CAS  PubMed  Google Scholar 

  86. Reynolds JJ et al (2009) Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol 29:1354–1362. doi:10.1128/MCB.01471-08

    Article  CAS  PubMed  Google Scholar 

  87. Cha MY et al (2015) Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer’s disease. Hum Mol Genet 24:6492–6504. doi:10.1093/hmg/ddv358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smigrodzki RM, Khan SM (2005) Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 8:172–198. doi:10.1089/rej.2005.8.172

    Article  CAS  PubMed  Google Scholar 

  89. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration . Adv Exp Med Biol 942:269–286. doi:10.1007/978-94-007-2869-1_12

  90. Verstraeten A, Theuns J, Van Broeckhoven C (2015) Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31:140–149. doi:10.1016/j.tig.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  91. Vives-Bauza C et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107:378–383. doi:10.1073/pnas.0911187107

    Article  CAS  PubMed  Google Scholar 

  92. Valentin-Vega YA et al (2012) Mitochondrial dysfunction in ataxia-telangiectasia. Blood 119:1490–1500. doi:10.1182/blood-2011-08-373639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fang EF et al (2014) Defective mitophagy in XPA via PARP -1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896. doi:10.1016/j.cell.2014.03.026

  94. Sumpter R Jr et al (2016) Fanconi anemia proteins function in mitophagy and immunity. Cell 165:867–881. doi:10.1016/j.cell.2016.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lagouge M et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122. doi:10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  96. Lehmann S, Costa AC, Celardo I, Loh SH, Martins LM (2016) Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson's disease. Cell Death Dis 7:e2166. doi:10.1038/cddis.2016.72

  97. Fang EF et al (2016) NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab 24:566–581. doi:10.1016/j.cmet.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  98. Cardinale A, Paldino E, Giampa C, Bernardi G, Fusco FR (2015) PARP -1 inhibition is neuroprotective in the R6/2 mouse model of Huntington’s disease. PLoS One 10:e0134482. doi:10.1371/journal.pone.0134482

  99. Sharifi R et al (2013) Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 32:1225–1237. doi:10.1038/emboj.2013.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Byrne AB et al (2016) Inhibiting poly(ADP-ribosylation) improves axon regeneration. Elife 5:e12734. doi:10.7554/eLife.12734

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Staples .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Williams, D.T., Staples, C.J. (2017). Approaches for Identifying Novel Targets in Precision Medicine: Lessons from DNA Repair. In: El-Khamisy, S. (eds) Personalised Medicine. Advances in Experimental Medicine and Biology, vol 1007. Springer, Cham. https://doi.org/10.1007/978-3-319-60733-7_1

Download citation

Publish with us

Policies and ethics