Efficient Software Assets for Fostering Learning in Applied Games

  • Matthias Maurer
  • Alexander Nussbaumer
  • Christina Steiner
  • Wim van der Vegt
  • Rob Nadolski
  • Enkhbold Nyamsuren
  • Dietrich Albert
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 725)

Abstract

Digital game technologies are a promising way to enable training providers to reach other target groups, namely those who are not interested in traditional learning technologies. Theoretically, through using digital game technologies we are able to foster the acquisition of any competence by specifying competency structures, offering adequate problem solving support while maintaining motivation and taking personality into consideration as part of the tailored game experience. In this paper, we illustrate how this is done within the RAGE project, which aims to develop, transform, and enrich advanced technologies into self-contained gaming assets for the leisure games industry to support game studios in developing applied games easier, faster, and more cost effectively. The software assets discussed here represent a modular approach for fostering learning in applied games. These assets address four main pedagogical functions: competency structures (i.e., logical order for learning), motivation, performance support (i.e., guidance to maintain learning), and adaption to the player’s personality.

Keywords

Applied gaming Learning analytics CbKST Motivation maintenance Performance support Personality adaption 

References

  1. 1.
    Albert, D., Hockemeyer, C., Kickmeier-Rust, M.D., Peirce, N., Conlan, O.: Microadaptivity within complex learning situations - a personalized approach based on competence structures and problem spaces. In: 15th International Conference on Computers in Education, ICCE 2007 (2007)Google Scholar
  2. 2.
    Augustin, T., Hockemeyer, C., Kickmeier-Rust, M.D., Podbregar, P., Suck, R., Albert, D.: The simplified updating rule in the formalization of digital educational games. J. Comput. Sci. 4(4), 293–303 (2013)CrossRefMATHGoogle Scholar
  3. 3.
    Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Sea-cord, R., Wallnau, K.: Volume II: Technical concepts of component-based software engineering, pp. 26–29. Technical Report CMU/SEI-2000-TR-008, Carnegie Mellon Software Engineering Institute (2000)Google Scholar
  4. 4.
    Bandura, A.: Toward a psychology of human agency. Perspect. Psychol. Sci. 1, 164–180 (2006). doi:10.1111/j.1745-6916.2006.00011.x CrossRefGoogle Scholar
  5. 5.
    Codish, D., Ravid, G.: Personality based gamification-Educational gamification for extroverts and introverts. In: Proceedings of the 9th CHAIS Conference for the Study of Innovation and Learning Technologies: Learning in the Technological Era, vol. 1, pp. 36–44 (2014)Google Scholar
  6. 6.
    Csikszentmihalyi, M., LeFevre, J.: Optimal experience in work and leisure. J. Pers. Soc. Psychol. 56, 815–822 (1989). doi:10.1037/0022-3514.56.5.815 CrossRefGoogle Scholar
  7. 7.
    De Freitas, S.: Learning in Immersive Worlds. Joint Information Systems Committee, London (2006)Google Scholar
  8. 8.
    Ferro, L.S., Walz, S.P., Greuter, S.: Towards personalised, gamified systems: an investigation into game design, personality and player typologies. In: Proceedings of The 9th Australasian Conference on Interactive Entertainment: Matters of Life and Death, p. 7. ACM, September 2013Google Scholar
  9. 9.
    Fisher, S.L., Ford, J.K.: Differential effects of learner effort and goal orientation on two learning outcomes. Pers. Psychol. 51, 397–420 (1998). (Wiley)CrossRefGoogle Scholar
  10. 10.
    Gardner, H.: Frames of Mind: The Theory of Multiple Intelligences. Basic Books, New York (1983)Google Scholar
  11. 11.
    Gosling, S.D., Rentfrow, P.J., Swann Jr., W.B.: A very brief measure of the Big-Five personality domains. J. Res. Pers. 37, 504–528 (2003)CrossRefGoogle Scholar
  12. 12.
    Heller, J., Steiner, C., Hockemeyer, C., Albert, D.: Competence-based knowledge structures for personalised learning. Int. J. E-Learn. 5(1), 75–88 (2006)Google Scholar
  13. 13.
    Hoyle, R.H., Stephenson, M.T., Palmgreen, P., Lorch, E.P., Donohew, R.L.: Reliability and validity of a brief measure of sensation seeking. Pers. Individ. Differ. 32, 401–414 (2002)CrossRefGoogle Scholar
  14. 14.
    Johnson, L., Adams Becker, S., Estrada, V., Freeman, A.: NMC Horizon Report: 2014, Higher Education Edition. The New Media Consortium, Austin (2014)Google Scholar
  15. 15.
    Kickmeier-Rust, M.D., Steiner, C.M., Albert, D.: Apt to adapt: micro- and macro-level adaptation in educational games. In: Daradoumis, T., Caballé, S., Juan, A.A., Xhafa, F. (eds.) Technology-Enhanced Systems and Tools for Collaborative Learning Scaffolding, vol. 30, pp. 221–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kickmeier-Rust, M.D., Mattheiss, E., Steiner, C., Albert, D.: A psycho-pedagogical framework for multi-adaptive educational games. IGI Global 1, 45–58 (2011)Google Scholar
  17. 17.
    Kopeinik, S., Nussbaumer, A., Bedek, M., Albert, D.: Using CbKST for learning path recommendation in game-based learning. In: 20th International Conference on Computers in Education, pp. 26–30(2012)Google Scholar
  18. 18.
    Ley, T., Kump, B., Albert, D.: A methodology for eliciting, modelling, and evaluating expert knowledge for an adaptive work-integrated learning system. Int. J. Hum.-Comput. Stud. 68(4), 185–208 (2010)CrossRefGoogle Scholar
  19. 19.
    Starks, K.: Cognitive behavioral game design: a unified model for designing serious games. Front. Psychol. 5(28) (2014). doi:10.3389/fpsyg.2014.00028
  20. 20.
    Steiner, C.M., Kickmeier-Rust, M.D., Mattheiss, E., Göbel, S., Albert, D.: Balancing on a high wire: adaptivity, a key factor of future learning games. In: Kickmeier-Rust, M.D., Albert, D. (eds.) An Alien’s Guide To Multi-adaptive Educational Computer Games, pp. 43–88. Informing Science Press, Santa Rosa (2012)Google Scholar
  21. 21.
    VandeWalle, D., Brown, S.P., Cron, W.L., Slocum Jr., J.W.: The influence of goal orientation and self-regulation tactics on sales performance: a longitudinal field test. J. Appl. Psychol. 84(2), 249 (1999)CrossRefGoogle Scholar
  22. 22.
    Van der Vegt, W., Westera, W., Nyamsuren, E., Georgiev, A., Martinez-Ortiz, I.: RAGE architecture for reusable serious gaming technology components. Int. J. Comput. Games Technol. (2016). Article ID 5680526. http://dx.doi.org/10.1155/2016/5680526
  23. 23.
    Vegt, W., Nyamsuren, E., Westera, W.: RAGE reusable game software components and their integration into serious game engines. In: Kapitsaki, G.M., Santana de Almeida, E. (eds.) ICSR 2016. LNCS, vol. 9679, pp. 165–180. Springer, Cham (2016). doi:10.1007/978-3-319-35122-3_12 Google Scholar
  24. 24.
    Zimmerman, B.J.: Becoming a self-regulated learner: an overview. Theory Pract. 41, 64–70 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Matthias Maurer
    • 1
  • Alexander Nussbaumer
    • 1
  • Christina Steiner
    • 1
  • Wim van der Vegt
    • 2
  • Rob Nadolski
    • 2
  • Enkhbold Nyamsuren
    • 2
  • Dietrich Albert
    • 1
    • 3
  1. 1.Graz University of TechnologyGrazAustria
  2. 2.Open University, Netherlands Open UniversityHeerlenNetherlands
  3. 3.University of GrazGrazAustria

Personalised recommendations