Skip to main content

Exudates in Detection and Classification of Diabetic Retinopathy

  • Conference paper
  • First Online:
Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016) (SoCPaR 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 614))

Included in the following conference series:

Abstract

Diabetic retinopathy is a complication in the eye due to the presence of exudates in the retinal blood vessels. Vision loss occurs by the gradual progression of these exudates. Hence identification of exudates is an essential step for screening of diabetic retinopathy. In the proposed method, the exudates are segmented by eliminating the blood vessels and optic disc from the fundus images. The Grey Level Co-occurrence Matrix (GLCM) features are extracted from the segmented image. These features are used for training and testing the three different classifiers such as Support Vector Machine (SVM), Scaled Conjugate Gradient Back Propagation Network (SCG-BPN) and Generalized Regression Neural Network (GRN). From the experimental results, the SVM classifier gives better accuracy compared to the other two classifiers. The images are taken from publicly available database Diabetic retinopathy image database 1 (Diaretdb1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mariotti, S., Pascolini, D.: Visual Impairment, Vision Loss and Blindness 2010 global estimates, and VI and blindness causes. Global Data on Visual Impairments 2010, WHO (2010)

    Google Scholar 

  2. Kande, G.B., Subbaiah, P.V., Savithri, T.S.: Feature extraction in digital fundus images. J. Med. Biol. Eng. 29(3), 122–130 (2009)

    MATH  Google Scholar 

  3. Osareh, A., Shadgar, B., Markham, R.: A computational intelligence based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Technol. Biomed. 13(4), 535–545 (2009)

    Article  Google Scholar 

  4. Youssef, D., Solouma, N., El-dib, A., Mabrouk, M., Youssef, A.-B.: New feature-based detection of blood vessels and exudates in color fundus images. In: 2010 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), 7–10 July 2010, pp. 294–299 (2010)

    Google Scholar 

  5. Mansour, R.F., Abdelrahim, E.M., Al-Johani, A.S.: Identification of diabetic retinal exudates in digital color images using support vector machine. J. Intell. Learn. Syst. Appl. 5, 135–142 (2013)

    Google Scholar 

  6. Akter, M., Uddin, M.S., Khan, M.H.: Morphology-based exudates detection from color fundus images in diabetic retinopathy. In: IEEE International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), 10–12 April 2014, pp. 1–4 (2014)

    Google Scholar 

  7. Zhang, X., Thibault, G., Decenciere, E., Marcotegui, B., Lay, B., Danno, R., Cazuguel, G., Quellec, G., Lamard, M., Massin, P., Chabouis, A., Victor, Z., Ergina, A.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)

    Article  Google Scholar 

  8. Banarjee, S., Chowdary, A.R.: Case based reasoning in the detection of retinal abnormalities using decision trees. Procedia Comput. Sci. 46, 402–408 (2015). ScienceDirect

    Article  Google Scholar 

  9. Kumar, A., Kumar, A., Srivastava, M.: A segment based technique for detecting exudate from retinal fundus image. Procedia Technol. 6, 1–9 (2012). Sciverse ScienceDirect

    Article  Google Scholar 

  10. Decencière, F., et al.: Feedback on a publicly distributed database: the Messidor database. Image Anal. Stereology 33(3), 231–234, ISSN 1854-5165, August 2014. http://www.ias-iss.org/ojs/IAS/article/view/1155 or http://dx.doi.org/10.5566/ias.1155

  11. Albregtsen, F.: Statistical texture measures computed from gray level co-occurrence matrix

    Google Scholar 

  12. Yavuz, Z., Köse, C.: Vessel segmentation in retinal images using multi-scale image enhancement and clustering. In: 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, pp. 581–584 (2015)

    Google Scholar 

  13. Sandhu, T., Singh, P.: Domain specific CBIR for highly textured images. Comput. Sci. Eng. Int. J. (CSEIJ) 3(2), 33–39 (2013)

    Google Scholar 

  14. Gebejes, A., Huertas, R.: Tecture characterization based on gray level co-occurrence matrix. In: Artificial Intelligence and Image Processing. Conference of Informatics and Management Sciences, pp. 375–378 (2013)

    Google Scholar 

  15. Karthikeyan, R., Ali, P.: Retinal analysis for abnormality detection – an overview. J. Comput. Sci. 8(3), 436–442 (2012)

    Article  Google Scholar 

  16. Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H., Pietilä, J: DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical report

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vanithamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Vanithamani, R., Renee Christina, R. (2018). Exudates in Detection and Classification of Diabetic Retinopathy. In: Abraham, A., Cherukuri, A., Madureira, A., Muda, A. (eds) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). SoCPaR 2016. Advances in Intelligent Systems and Computing, vol 614. Springer, Cham. https://doi.org/10.1007/978-3-319-60618-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60618-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60617-0

  • Online ISBN: 978-3-319-60618-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics