Abstract
Diabetic retinopathy is a complication in the eye due to the presence of exudates in the retinal blood vessels. Vision loss occurs by the gradual progression of these exudates. Hence identification of exudates is an essential step for screening of diabetic retinopathy. In the proposed method, the exudates are segmented by eliminating the blood vessels and optic disc from the fundus images. The Grey Level Co-occurrence Matrix (GLCM) features are extracted from the segmented image. These features are used for training and testing the three different classifiers such as Support Vector Machine (SVM), Scaled Conjugate Gradient Back Propagation Network (SCG-BPN) and Generalized Regression Neural Network (GRN). From the experimental results, the SVM classifier gives better accuracy compared to the other two classifiers. The images are taken from publicly available database Diabetic retinopathy image database 1 (Diaretdb1).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mariotti, S., Pascolini, D.: Visual Impairment, Vision Loss and Blindness 2010 global estimates, and VI and blindness causes. Global Data on Visual Impairments 2010, WHO (2010)
Kande, G.B., Subbaiah, P.V., Savithri, T.S.: Feature extraction in digital fundus images. J. Med. Biol. Eng. 29(3), 122–130 (2009)
Osareh, A., Shadgar, B., Markham, R.: A computational intelligence based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Technol. Biomed. 13(4), 535–545 (2009)
Youssef, D., Solouma, N., El-dib, A., Mabrouk, M., Youssef, A.-B.: New feature-based detection of blood vessels and exudates in color fundus images. In: 2010 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), 7–10 July 2010, pp. 294–299 (2010)
Mansour, R.F., Abdelrahim, E.M., Al-Johani, A.S.: Identification of diabetic retinal exudates in digital color images using support vector machine. J. Intell. Learn. Syst. Appl. 5, 135–142 (2013)
Akter, M., Uddin, M.S., Khan, M.H.: Morphology-based exudates detection from color fundus images in diabetic retinopathy. In: IEEE International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), 10–12 April 2014, pp. 1–4 (2014)
Zhang, X., Thibault, G., Decenciere, E., Marcotegui, B., Lay, B., Danno, R., Cazuguel, G., Quellec, G., Lamard, M., Massin, P., Chabouis, A., Victor, Z., Ergina, A.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)
Banarjee, S., Chowdary, A.R.: Case based reasoning in the detection of retinal abnormalities using decision trees. Procedia Comput. Sci. 46, 402–408 (2015). ScienceDirect
Kumar, A., Kumar, A., Srivastava, M.: A segment based technique for detecting exudate from retinal fundus image. Procedia Technol. 6, 1–9 (2012). Sciverse ScienceDirect
Decencière, F., et al.: Feedback on a publicly distributed database: the Messidor database. Image Anal. Stereology 33(3), 231–234, ISSN 1854-5165, August 2014. http://www.ias-iss.org/ojs/IAS/article/view/1155 or http://dx.doi.org/10.5566/ias.1155
Albregtsen, F.: Statistical texture measures computed from gray level co-occurrence matrix
Yavuz, Z., Köse, C.: Vessel segmentation in retinal images using multi-scale image enhancement and clustering. In: 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, pp. 581–584 (2015)
Sandhu, T., Singh, P.: Domain specific CBIR for highly textured images. Comput. Sci. Eng. Int. J. (CSEIJ) 3(2), 33–39 (2013)
Gebejes, A., Huertas, R.: Tecture characterization based on gray level co-occurrence matrix. In: Artificial Intelligence and Image Processing. Conference of Informatics and Management Sciences, pp. 375–378 (2013)
Karthikeyan, R., Ali, P.: Retinal analysis for abnormality detection – an overview. J. Comput. Sci. 8(3), 436–442 (2012)
Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Raninen, A., Voutilainen, R., Uusitalo, H., Kälviäinen, H., Pietilä, J: DIARETDB1 diabetic retinopathy database and evaluation protocol. Technical report
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Vanithamani, R., Renee Christina, R. (2018). Exudates in Detection and Classification of Diabetic Retinopathy. In: Abraham, A., Cherukuri, A., Madureira, A., Muda, A. (eds) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). SoCPaR 2016. Advances in Intelligent Systems and Computing, vol 614. Springer, Cham. https://doi.org/10.1007/978-3-319-60618-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-60618-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60617-0
Online ISBN: 978-3-319-60618-7
eBook Packages: EngineeringEngineering (R0)