Skip to main content

Coccidioidomycosis: Increasing Incidence of an “Orphan” Disease in Response to Environmental Changes

  • Chapter
  • First Online:
Modeling the Transmission and Prevention of Infectious Disease

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 4))

Abstract

The number of cases of reported coccidioidomycosis infection, also known as valley fever, has increased significantly in the southwestern USA since the late 1990s. The causative agent of the disease is a dimorphic, soil-dwelling fungus in the genus Coccidioides with two species C. immitis and C. posadasii that persist in dry soils in the form of arthroconidia that can become airborne when soil is disturbed. Excessive disturbance of native soils in Coccidioides endemic areas in California, Arizona, and also Mexico, mainly due to construction and agriculture, has resulted in increased dust emission in these locations. In addition, the prolonged and ongoing drought in the southwestern USA has led to an increased level of PM10 (particulate matter 10 μm or less in diameter) pollution, which resulted in an increase in the amount of airborne arthroconidia of these pathogens which in turn led to the increase in disease incidence. Because coccidioidomycosis is not prevalent in the entire USA, research to elucidate the ecology of the pathogen, medical research to develop a vaccine against the disease, as well as the search for new antifungal drugs with less negative side effects in patients never attracted significant funding in the past. As a result, coccidioidomycosis is often named either an “orphan disease” or a “neglected disease.” In particular, a vaccine to protect humans from the pathogen has been elusive to date, and both accurate diagnosis and treatment of the disease have remained difficult. Therefore, prevention of coccidioidomycosis through reasonable reduction of exposure is likely the best way to reduce disease incidence and the associated human, animal, as well as financial losses. Although the causal relationships between environmental factors and disease incidence are not well understood at this time, it is reasonable to assume that arthroconidia of Coccidioides spp. will be affected by factors that impact the organism’s life cycle as well as human exposure to airborne dust sources. The predicted climate change in the southwestern USA to a drier state in the future and increased soil disturbance due to dramatic population increase in Coccidioides endemic areas of California and Arizona will likely lead to further increase of coccidioidomycosis incidence and may even lead to the establishment of the pathogen in other areas where disease incidence has been traditionally low or nonexistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DA, Gallagher KM, Jajosky RA, Kriseman J, Sharp P, Anderson WJ, Aranas AE, Mayes M, Wodajo MS, Onweh DH, Abellera JP (2013) Summary of notifiable diseases-United States, 2011. MMWR Morb Mortal Wkly Rep 60:1–17

    PubMed  Google Scholar 

  • Ampel NM (2010) What’s behind the increasing rates of coccidioidomycosis in Arizona and California? Curr Infect Dis Rep 12:211–216

    Article  PubMed  Google Scholar 

  • Amy PS, Halderman DL (1997) Microbial dormancy and survival in the subsurface. The microbiology of the terrestrial deep subsurface, vol 4. CRC Press, Boca Raton, FL, pp 185–204

    Google Scholar 

  • Anstead GM, Graybill JR (2006) Coccidioidomycosis. Infect Dis Clin N Am 20:621–643

    Article  Google Scholar 

  • Aronson JD, Saylor RM, Parr EI (1942) Relationship of coccidioidomycosis to calcified pulmonary nodules. Arch Pathol 34:31–48

    Google Scholar 

  • Baker E, Mrak M, Smith CE (1943) The morphology, taxonomy and distribution of Coccidioides immitis Rixford & Gilchrist 1896. Farlowia 1:199–244

    Google Scholar 

  • Baptista-Rosas RL, Hinojosa A, Riquelme M (2007) Ecological niche modeling of Coccidioides spp. in western North American deserts. Ann NY Acad Sci 1111:35–46

    Article  PubMed  Google Scholar 

  • Baptista-Rosas RC, Catalán-Dibene J, Romero-Olivares AL et al (2012) Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking valley fever to soil and climate conditions. Fung Ecol 5:177–190

    Article  Google Scholar 

  • Barker BM, Tabor JA, Shubitz LF et al (2012) Detection and phylogenetic analysis of Coccidioides posadasii in Arizona soil samples. Fung Ecol 5:163–176

    Article  Google Scholar 

  • Belnap J (2003a) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Article  Google Scholar 

  • Belnap J (2003b) Biological soil crusts and wind erosion. Biological soil crusts: structure, function, and management. Springer, Berlin, pp 339–347

    Google Scholar 

  • Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degrad Devel 8:355–366

    Article  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–649

    Article  CAS  Google Scholar 

  • Binnicker MJ, Buckwalter SP, Eisberner JJ et al (2007) Detection of Coccidioides species in clinical specimens by Real-Time PCR. J Clin Microbiol 45:173–178

    Article  CAS  PubMed  Google Scholar 

  • Binnicker MJ, Popa AS, Catania J et al (2011) Meningeal coccidioidomycosis diagnosed by real-time polymerase chain reaction analysis of cerebrospinal fluid. Mycologia 171:285–289

    Google Scholar 

  • Bowman BH, Taylor JW, White TJ (1992) Molecular evolution of the fungi: human pathogens. Mol Biol Evol 9:893–904

    CAS  PubMed  Google Scholar 

  • Boxall ABA, Hardy A, Beulke S et al (2009) Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect 117:508–514

    Article  CAS  PubMed  Google Scholar 

  • Brandt ME, Warnock DW, Murray PR et al (2006) Histoplasma, Blastomyces, Coccidioides, and other dimorphic fungi causing systemic mycoses. In: Manual of clinical microbiology, vol 2, 9th edn. ASM Press, Washington, pp 1857–1873

    Google Scholar 

  • Breslau AM, Kubota MY (1964) Continuous in vitro cultivation of spherules of Coccidioides immitis. J Bacteriol 87:468–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J, Benedict K, Park BJ et al (2013) Coccidioidomycosis: epidemiology. Clin Epidemiol 5:185–119

    PubMed  PubMed Central  Google Scholar 

  • Burwell LA, Park BJ, Wannemuehler KA et al (2009) Outcomes among inmates treated for coccidioidomycosis at a correctional institution during a community outbreak, Kern County, California, 2004. Clin Infect Dis 49:e113–e119

    Article  CAS  PubMed  Google Scholar 

  • Carley S (2009) State renewable energy electricity policies: an empirical evaluation of effectiveness. Energ Policy 37:3071–3081

    Article  Google Scholar 

  • Carlson TN, Prospero JM (1972) The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J Appl Meteorol 11:283–297

    Article  Google Scholar 

  • Carter RA (1934) Infectious granulomas of bones and joints, with special reference to coccidioidal granuloma. Radiology 23:1–16

    Article  Google Scholar 

  • Casadevall A, Pirofski LA (2006) The weapon potential of human pathogenic fungi. Med Mycol 44:689–696

    Article  CAS  PubMed  Google Scholar 

  • Castañón-Olivares LR, Laniado-Laborín R, Concepcion T, Muñoz-Hernández B, Aroch-Calderón A, Aranda-Uribe IS, Flores-Sánchez MA, del Rocío G-MM, Hernández-Navarez A, Manjarrez-Zavala ME, Miranda-Mauricio S (2010) Clinical comparison of two Mexican coccidioidins. Mycopathologia 169:427–430

    Article  PubMed  Google Scholar 

  • Catalán-Dibene J, Johnson SM, Eaton et al (2014) Detection of coccidioidal antibodies in serum of a small rodent community in Baja California, Mexico. Fung Biol 118:330–339

    Article  Google Scholar 

  • Cole GT, Xue JM, Okeke CN et al (2004) A vaccine against coccidioidomycosis is justified and attainable. Med Mycol 42:189–216

    Article  CAS  PubMed  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E et al (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Como JA (1994) Oral azole drugs as systemic antifungal therapy. N Engl J Med 330:263–272

    Article  CAS  PubMed  Google Scholar 

  • Converse JL, Besemer AR (1959) Nutrition of the parasitic phase of Coccidioides immitis in a chemically defined medium. J Bacteriol 78:231–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox R, Brummer E, Lecara G (1977) In vitro lymphocyte responses of coccidioidin skin test-positive and negative-persons to coccidioidin, spherulin and a Coccidioides cell wall antigen. Infect Immun 15:751–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crum NF, Lederman ER, Stafford CM et al (2004) Coccidioidomycosis: a descriptive survey of a reemerging disease. Clinical characteristics and current controversies. Medicine 83:149–175

    PubMed  Google Scholar 

  • Darling ST (1906) A protozoan general infection producing pseudotubercles in the lungs and focal necroses in the liver, spleen, and lymphnodes. J Am Med Assoc 46:283–285

    Google Scholar 

  • Das R, McNary J, Fitzsimmons K et al (2012) Occupational coccidioidomycosis in California. J Occup Environ Med 54:564–571

    Article  PubMed  Google Scholar 

  • Daubenmire RF (1938) Merriam's life zones of North America. Q Rev Biol 13:327–332

    Article  Google Scholar 

  • De Almeida F (1933) The blastomycoses of Brazil. Ann Fac Med Sa Paulo 9:69

    Google Scholar 

  • Dettman JR, Jacobson DJ, Taylor JW (2003) A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–2720

    Article  PubMed  Google Scholar 

  • Dickson EC (1937) “Valley fever” of the San Joaquin Valley and the fungus Coccidioides. Calif West Med 47:151–155

    CAS  Google Scholar 

  • Dixon DM (2001) Coccidioides immitis as a select agent of bioterrorism. J Appl Microbiol 91:602–605

    Article  CAS  PubMed  Google Scholar 

  • Douhan GW, Smith ME, Huyrn KL et al (2008) Multigene analysis suggests ecological speciation in the fungal pathogen Claviceps purpurea. Mol Ecol 17:2276–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeberg RO, Ely AF (1956) Coccidioides immitis in the soil of the Southern San Joaquin Valley. Am J Med Sci 231:151–154

    Article  CAS  PubMed  Google Scholar 

  • Elconin AF, Egeberg RO, Egeberg MC (1964) Significance of soil salinity on the ecology of Coccidioides immitis. J Bacteriol 87:500–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emmons CW (1942) Isolation of Coccidioides immitis from soil and rodents. Pub Health Rep 27:109–111

    Article  Google Scholar 

  • Emmons CW (1954) Isolation of Myxotrichum and Gymnoascus from the lungs of animals. Mycologia 46:334-338

    Google Scholar 

  • English LC (2010) Diversity of fungal communities in soil samples of Kern County, CA, with emphasis on detection of Coccidioides immitis, the valley fever fungus. Master Thesis, California State University, Bakersfield

    Google Scholar 

  • Etyemezian V, Nikolich G, Ahonen S et al (2007) The Portable In Situ Wind Erosion Laboratory (PI-SWERL): a new method to measure PM 10 windblown dust properties and potential for emissions. Atmos Environ 41:3789–3796

    Article  CAS  Google Scholar 

  • Felger RS, Moser MB (1985) People of the desert and sea - ethnobotany of the Seri Indians. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • Fierer J (2007) The role of IL-10 in genetic susceptibility to coccidioidomycosis on mice. Ann NY Acad Sci 111:236–244

    Article  CAS  Google Scholar 

  • Fisher MC, Koenig GL, White TJ et al (2002) Molecular and phenotypic description of Coccidioides posadasii sp. nov., previously recognized as the non-California population of Coccidioides immitis. Mycologia 94:73–84

    Article  CAS  PubMed  Google Scholar 

  • Fisher FS, Bultman MW, Johnson SM et al (2007) Coccidioides niches and habitat parameters in the southwestern United States - a matter of scale. Ann NY Acad Sci 1111:47–72

    Article  PubMed  Google Scholar 

  • Galgiani JN, Grace GM, Lundergan LL (1991) New serologic tests for early detection of coccidioidomycosis. J Infect Dis 163:671–674

    Article  CAS  PubMed  Google Scholar 

  • Galgiani JN, Ampel NM, Blair JE et al (2005) Coccidioidomycosis. Clin Infect Dis 41:1217–1212

    Article  PubMed  Google Scholar 

  • Garg AP, Gandotra S, Mukerji KG et al (1985) Ecology of keratinophilic fungi. Proc Plant Sci 94:149–163

    Google Scholar 

  • Gifford MA (1936) Annual report of Kern County Health Department for the fiscal year 1935–1936, pp 22–23

    Google Scholar 

  • Gifford MA, Buss WC, Douds RJ (1937) Data on Coccidioides fungus infection, Kern County, 1901-1936. Annual report of Kern County Department of Public Health 1936–1937, pp 39–54

    Google Scholar 

  • Gilchrist TC (1894) Protozoan dermatitis. J Cutan Gen Dis 12:496–499

    Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI et al (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Article  CAS  PubMed  Google Scholar 

  • Greene DR, Koenig G, Fisher MC et al (2000) Soil isolation and molecular identification of Coccidioides immitis. Mycologia 92:406–410

    Article  Google Scholar 

  • Haase EF (1972) Survey of floodplain vegetation along the lower Gila River in southwestern Arizona. J Arizona Acad Sci 7:75–81

    Article  Google Scholar 

  • Harrison WR, Merbs CF, Leathers CR (1991) Evidence of coccidioidomycosis in the skeleton of an ancient Arizona Indian. J Infect Dis 164:436–437

    Article  CAS  PubMed  Google Scholar 

  • Hector RF, Laniado-Laborin R (2005) Coccidioidomycosis—a fungal disease of the Americas. PLoS Med 25;2(1):e2

    Article  Google Scholar 

  • Hector R, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemotherapy 34:587–593

    Article  CAS  Google Scholar 

  • Hector RF, Rutherford GW, Tsang CA et al (2011) The public health impact of coccidioidomycosis in Arizona and California. Int J Environ Res Pub Health 8:1150–1173

    Article  Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In: Van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, pp 353–373

    Google Scholar 

  • Hoshino YT, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  • Huang JY, Bristow B, Shafir S et al. (2012) Coccidioidomycosis-associated deaths, United States, 1990–2008. Center of Disease Control and Prevention (CDC). Emerg Infect Dis. doi:10.3201/eid1811.120752

  • Huppert M (1957) A technique for safe handling of Coccidioides immitis cultures. J Lab Clin Med 50:158–164

    CAS  PubMed  Google Scholar 

  • Huppert M, Cole GT, Sun SH et al (1983) The propagule as an infectious agent in coccidioidomycosis. Microbiology 10:262

    Google Scholar 

  • Idso SB (1975) Whirlwinds, density currents, and topographic disturbances: a meteorological melange of intriguing interactions. Weatherwise 28:61–65

    Article  Google Scholar 

  • Johnson SM, Carlson EL, Fisher FS, Pappagianis D (2014) Demonstration of Coccidioides immitis and Coccidioides posadasii DNA in soil samples collected from Dinosaur National Monument, Utah. Med Mycol 52:610–617

    Article  PubMed  Google Scholar 

  • Jordan JW, Weidman FD (1936) Coccidioidal granuloma. Comparison of the North and South American diseases, etc. Arch Derm Syph 33:31-47, 92

    Google Scholar 

  • Kaufman L, Standard PC, Huppert M et al (1985) Value of the coccidioidin heat-stable (HS and tube precipitin) antigens in immunodiffusion. J Clin Microbiol 22:515–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21:638–644

    Article  PubMed  Google Scholar 

  • Kennedy MJ, Reader SL, Swierczynski LM (1994) Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:2513–2529

    Article  PubMed  Google Scholar 

  • Kirkland TN, Fierer JF (1996) Coccidioidomycosis: a reemerging infectious disease. Emerg Infect Dis 3:192–199

    Article  Google Scholar 

  • Knudtson WU, Robertstad GW (1970) The isolation of keratinophilic fungi from soil and wild animals in South Dakota. Mycopathol Mycol Appl 40:309–323

    Article  CAS  PubMed  Google Scholar 

  • Kofoupanou V, Burt A, Szaro T et al (2001) Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol Biol Evol 18:1246–1258

    Article  Google Scholar 

  • Kolivras KN, Johnson PS, Comrie AC et al (2001) Environmental variability and coccidioidomycosis (valley fever). Aerobiologia 17:31–42

    Article  Google Scholar 

  • Kowalchuk G, Smit E, Kowalchuk et al (2004) Fungal community analysis using PCR-denaturing gradient gel electrophoresis (DGGE), 2nd edn. Kluwer Academic, pp 771–788

    Google Scholar 

  • Lacey J, Venette J (1995) Outdoor air sampling techniques. In: Bioaerosols handbook. CRC Lewis, Boca Raton, FL, pp 407–471

    Google Scholar 

  • Lauer A (2015) Detection of Coccidioides immitis in soils around Edwards Airforce Base, California. Final report to the NASA Armstrong Flight Research Center (AFRC), Edwards, CA

    Google Scholar 

  • Lauer A, Baal JDH, Baal JCH et al (2012) Detection of Coccidioides immitis in Kern County, California, by multiplex PCR. Mycologia 104:62–69

    Article  CAS  PubMed  Google Scholar 

  • Lauer A, Talamantes J, Castañón Olivares LR et al (2014) Combining forces - the use of landsat TM satellite imagery, soil parameter information, and multiplex PCR to detect Coccidioides immitis growth sites in Kern County, California. PLOS One. doi:10.1371/journal.pone.0111921

  • Lewis GG, Mewha J (1955) History of prisoner of war utilization by the United States Army 1776-1945. No. DA-PAM-20-213. Department of the Army, Washington, DC

    Google Scholar 

  • Litvintseva AP, Marsden-Haug N, Hurst S, Hill H, Gade L, Driebe EM, Ralston C, Roe C, Barker BM, Goldoft M, Keim P (2015) Valley fever: finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin Infect Dis 60:e1–e3

    Article  PubMed  Google Scholar 

  • Louie L, Ng S, Hajjeh R et al (1999) Influence of host genetics on the severity of coccidioidomycosis. Emerg Infect Dis 5:672–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubarsky R, Plunkett A (1955) In vitro production of the spherule phase of Coccidioides immitis. J Bacteriol 70:182–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddy KT (1965) Observations on Coccidioides immitis found growing naturally in soil. Arizona Med 22:281–288

    CAS  PubMed  Google Scholar 

  • Maddy KT, Coccozza J (1964) The probable geographic distribution of Coccidioides immitis in Mexico. Bol Oficina Sanit Panam 57:44–54

    CAS  PubMed  Google Scholar 

  • Maddy KT, Crecelius HG (1967) Establishment of Coccidioides immitis in negative soil following burial of infected animals and animal tissue. In: Proceedings of 2nd coccidioidomycosis symposium, University of Arizona Press, Tucson, Arizona, pp 309–312

    Google Scholar 

  • Marsden-Haug N, Goldoft M, Ralston C et al (2012) Coccidioidomycosis acquired in Washington State. Clin Infect Dis. doi:10.1093/cid/cis1028

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarty JM, Demetral LC, Dabrowski L et al (2013) Pediatric coccidioidomycosis in central California: a retrospective case series. Clin Infect Dis 56:1579–1585

    Article  PubMed  Google Scholar 

  • McLean ML (2012) The epidemiology of coccidioidomycosis – 15 California Counties, 96 2007-2011. Kings County Department of Public Health. http://www.co.kings.ca.us/Health/pdf/2014.01_The%20Epidemiology%20of%20Coccidioidomycosis_%20Collaborative%20County%20Report.pdf

  • Merriam CH (1898) Life zones and crop zones of the United States. US Government Printing Office

    Google Scholar 

  • Moore M (1989) Medicinal plants of the desert and Canyon West Santa Fe. Museum of New Mexico Press, New Mexico, pp 27–32

    Google Scholar 

  • Morrow W (2006) Holocene coccidioidomycosis: valley fever in early Holocene bison (Bison antiquus). Mycologia 98:669–677

    Article  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  • Neafsey DE, Barker BM, Sharpton TJ et al (2010) Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res 20:938–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen C, Barker BM, Hoover S, Nix DE, Ampel NM, Frelinger JA, Orbach MJ, Galgiani JN (2013) Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 26:505–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa AG (1967) Coccidioidomycosis in Mexico. In: Ajello L (ed) Proceedings of the symposium on coccidioidomycosis. University of Arizona Press, Phoenix, AZ

    Google Scholar 

  • Onofri S, Selbmann L, de Hoog GS et al (2007) Evolution and adaptation of fungi at boundaries of life. Adv Space Res 40:657–1664

    Article  Google Scholar 

  • Ophüls W (1905) Further observations on a pathogenic mould formerly described as a protozoon (Coccidioides immitis, Coccidioides pyogenes). J Exp Med 6:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Ophüls W, Moffitt HC (1900) A new pathogenic mould (formerly described as a protozoan: Coccidioides immitis pyogenes): preliminary report. Phila Med J 5:1471–1472

    Google Scholar 

  • Orr GF (1968) Some fungi isolated with Coccidioides immitis from soils of endemic areas in California. Bull Torrey Bot Club 95:424–431

    Article  Google Scholar 

  • Orr GF, Kuehn HH (1972) Notes on Gymnoascaceae. II. Some Gymnoascaceae and keratinophilic fungi from Utah. Mycologia 64:55–72

    CAS  PubMed  Google Scholar 

  • Pappagianis D (2007) Coccidioidomycosis serology L. coccidioidomycosis in California state correctional institutions. Ann NY Acad Sci 1111:103–111

    Article  PubMed  Google Scholar 

  • Pappagianis D, Levine HB (1975) The present status of vaccination against coccidioidomycosis in man. Am J Epidemiol 102:30–41

    Article  CAS  PubMed  Google Scholar 

  • Péwé TL (1981) Desert dust: an overview. In: Desert dust: origin, characteristics, and effect on man, no 186, pp 1–10

    Google Scholar 

  • Plunkett OA, Walker L, Huppert M (1963) An unusual isolate of Coccidioides immitis form the Los Banos area of California. Sabouradia 3:16–20

    Article  CAS  Google Scholar 

  • Posadas A (1892) Un nuevo caso de micosis fungoides con posrospermias. An Cir Med Argent 15:585–597

    Google Scholar 

  • Posadas A (1900) Psorospermiose infectante généralisée. Rev Chir Paris 21:277–282

    Google Scholar 

  • Posadas A (1928) Obras completes. Imprenta de la Universidad, Buenas Aires, pp 278–303

    Google Scholar 

  • Ranzoni FV (1968) Fungi isolated in culture from soils of the Sonoran Desert. Mycologia 60:356–371

    Article  CAS  PubMed  Google Scholar 

  • Rees RG (1967) Keratinophilic fungi from Queensland – isolation from feathers of wild birds. Sabouraudia 6:14–18

    Article  Google Scholar 

  • Rixford E (1931) Early history of coccidioidal granuloma in California. In: Coccidioidal granuloma. CA State Dept Publ Health Spec Bull 57:5–8

    Google Scholar 

  • Rixford E, Gilchrist TC (1931) Two cases of protozoan (coccidioidal) infection of the skin and other organs. Johns Hopkins Hosp Rep 10:209–268

    Google Scholar 

  • Rixford E, Dickson EC, Beck MD (1931) Coccidioidal granuloma. Special Bulletin no. 57. California Department of Public Health, pp 1–43

    Google Scholar 

  • Rose KD (2006) The beginning of the age of mammals. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Saubolle MA, McKellar PP, Sussland D (2007) Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol 45:26–30

    Article  CAS  PubMed  Google Scholar 

  • Sawyer JO, Keeler-Wolf T, Evens JM (2008) A manual of California vegetation, 2nd edn. California Native Plant Society Press, CNPS Publication Committee, Sacramento, CA

    Google Scholar 

  • Sharpton TJ, Stajich JE, Rounsley SD et al (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheff KW, York ER, Driebe EM et al (2010) Development of a rapid, cost-effective TaqMan Real-Time PCR assay for identification and differentiation of Coccidioides immitis and Coccidioides posadasii. Med Mycol 48:466–469

    Article  CAS  PubMed  Google Scholar 

  • Sherwood L (2014) U.S. solar market trends 2013. Interstate Renewable Energy Council (IREC). http://sherwoodassociates.com/PDF/2011%20ASES%20Paper-Market%20Trends.pdf

  • Shoham S, Levitz SM (2005) The immune response to fungal infections. Br J Haematol 129:569–582

    Article  PubMed  Google Scholar 

  • Shubitz LF, Hien TT, Perrill RH et al (2014) Modeling Nikkomycin Z dosing and pharmacology in murine pulmonary coccidioidomycosis preparatory to human phase II trials. J Infect Dis. doi:10.1093/infdis/jiu029

  • Sifuentes-Osornio J, Corzo-León DE, Ponce-de-León LA (2012) Epidemiology of invasive fungal infections in Latin America. Curr Fungal Infect Rep 6:23–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CE (1940) Epidemiology of acute coccidioidomycosis with erythema nodosum (“San Joaquin” or “Valley Fever”). Am J Public Health Nation’s Health 30:600–611

    Article  CAS  Google Scholar 

  • Smith CE, Beard RR, Whiting EG et al (1946) Varieties of coccidioidal infection in relation to the epidemiology and control of the diseases. Am J Pub Health 36:1394–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CE, Saito MT, Simons SA (1956) Pattern of 39,500 serologic tests in coccidioidomycosis. J Am Med Assoc 160:546–552

    Article  CAS  PubMed  Google Scholar 

  • Solar Energy Industries Association [SEIA] (2014) Major solar projects list: fact sheet. http://www.seia.org/research-resources/major-solar-projects-list. Accessed 1 Apr 2017

  • Sondermeyer G, Lee L, Gilliss D et al. (2013) Coccidioidomycosis-associated hospitalizations, California, USA, 2000–2011. Emerg Infect Dis 19:1590–1597

    Google Scholar 

  • Steward RA, Meyer KF (1932) Isolation of Coccidioides immitis (Stiles) from the soil. Exp Biol Med 29:937–938

    Article  Google Scholar 

  • Sugiyarna J, Goto S (1969) Mycoflora in core samples from stratigraphic drillings in middle Japan. IV. The yeast genera Candida Berkhout, Trichosporon Behrend, and Rhodotorula Harrison EM. Lodder from core samples. J Fac Sci Univ Tokyo III 10:97–118

    Google Scholar 

  • Sunenshine RH, Anderson S, Erhart L et al (2007) Public Health surveillance for coccidioidomycosis in Arizona. Ann NY Acad Sci 1111:96–102

    Article  PubMed  Google Scholar 

  • Swatek FE, Omieczienski DT (1970) Isolation and identification of Coccidioides immitis from natural sources. Mycopathol Mycol 41:155–166

    Article  CAS  Google Scholar 

  • Swatek FE, Omieczienski DT, Plunkett OA (1967) Coccidioides immitis in California. In: Proceedings of 2nd Coccidioidomycosis sympsoium. University of Arizona Press, Tucson, AZ, pp 255–264

    Google Scholar 

  • Thompson DB, Walker LR, Landau FH et al (2005) The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. J Arid Environ 61:609–629

    Article  Google Scholar 

  • Thompson GR, Lunetta JM, Johnson SM et al (2011) Early treatment with fluconazole may abrogate the development of IgG antibodies in coccidioidomycosis. Clin Infect Dis 53:20–24

    Article  CAS  Google Scholar 

  • Thompson GR III, Stevens DA, Clemons KV, Fierer J, Johnson RH, Sykes J, Rutherford G, Peterson M, Taylor JW, Chaturvedi V (2015) Call for a California coccidioidomycosis consortium to face the top ten challenges posed by a recalcitrant regional disease. Mycopathologia 179:1–9

    Article  PubMed  Google Scholar 

  • Thorner J (1941) Coccidioidomycosis – relative value of coccidioidin and tuberculin testing among children of the San Joaquin Valley. California West Med 54:12–15

    CAS  Google Scholar 

  • Valdivia L, Nix D, Wright M et al (2006) Coccidioidomycosis as a common cause of community-acquired pneumonia. Emerg Infect Dis 12:958–962

    Google Scholar 

  • Vasek FC (1980) Creosote bush: long-lived clones in the Mojave Desert. Am J Bot 67:246–255

    Article  Google Scholar 

  • Viriyakosol S, del Pilar Jimenez M et al. (2013) Dectin-1 is required for resistance to coccidioidomycosis in mice. mBio 4(1). doi:10.1128/mBio.00597-12

  • Wack EE, Ampel NM, Sunenshine RH, Galgiani JN (2015) The return of delayed-type hypersensitivity skin testing for Coccidioidomycosis. Clin Infect Dis 15:civ388

    Google Scholar 

  • Wang XL, Wang S, An CL (2015) Mini-review of published reports on coccidioidomycosis in China. Mycopathologia 180:299–303

    Article  CAS  PubMed  Google Scholar 

  • Warnock DA (2006) Fungal diseases: an evolving public health challenge. Med Mycol 44:697–705

    Article  PubMed  Google Scholar 

  • Wernicke R (1892) Über einen Protozoenbefund bei mycosis fungoides. Centralbl Bakt 12:859–861

    Google Scholar 

  • Whiston E, Taylor JW (2014) Genomics in Coccidioides: insights into evolution, ecology, and pathogenesis. Med Mycol 52:149–155

    Article  PubMed  Google Scholar 

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci Soc Am J 76:1685–1695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Lauer .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

Funding: This study was funded by NASA Armstrong Flight Research Center (grant number 42000505751).

Conflict of Interest: Antje Lauer declares that she has no conflict of interest.

Ethical approval: This chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lauer, A. (2017). Coccidioidomycosis: Increasing Incidence of an “Orphan” Disease in Response to Environmental Changes. In: Hurst, C. (eds) Modeling the Transmission and Prevention of Infectious Disease. Advances in Environmental Microbiology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-60616-3_6

Download citation

Publish with us

Policies and ethics