Skip to main content

Buruli Ulcer: Case Study of a Neglected Tropical Disease

  • Chapter
  • First Online:
Modeling the Transmission and Prevention of Infectious Disease

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 4))

  • 1063 Accesses

Abstract

Neglected tropical diseases affect almost all human communities in rural areas of mostly developing nations. They have staggering negative effects on human health and local, regional, and national economies through mortality and morbidity. These diseases are neglected in many large-scale disease management and control programs and therefore do not recieve the research and funding attention of diseases with higher pharmaceutical potential. One such disease that epitomozies this situation is Buruli ulcer disease, also known as Mycobacterium ulcerans infection. This necrotizing skin disease results in severe and lasting morbidity that primarily affects children in rural regions of Africa and other tropical and subtropical regions. It is caused by a mycobacterium related to other pathogens that are the agents for two other diseases, leprosy and tuberculosis; however, this pathogen secretes myolactone which is a cytotoxic molecule that is both necrotizing and immunodepressive and is unique within its phylogeny. As a neglected tropical disease, research and funding has generally been sporadic and diffuse among countries and agencies, limiting scientific gains in better understanding some basic disease system tenants such as the mode of transmission and where the pathogen grows and replicates in the environment. These limitations compounded with the fact that it focally affects rural and poor populations have made the control of Buruli ulcer disease challenging. Further, disease emergence and reemergence is thought to be associated with landscape modifications such as deforestation, dam construction, farming, and mining, coupling this disease with degraded environmental conditions that may faciliate either the emergence or sustainability of other water-related diseases of the rural poor. This chapter generally reviews Buruli ulcer disease within the context of neglected tropical diseases in a way that integrates the research that occurs at the molecular and cellular level of pathogen and host investigation with broader ecosystem factors that include other biological interactions (e.g., food webs) considered to be important to elucidating transmission of the pathogen, all of which must be assessed in combination to achieve successful future disease management activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abass KM, van der Werf TS, Phillips RO et al (2015) Buruli ulcer control in a highly endemic district in Ghana: role of community-based surveillance volunteers. Am J Trop Med Hyg 92:115–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Ablordey A, Amissah DA, Aboagye IF et al (2012) Detection of Mycobacterium ulcerans by the loop mediated isothermal amplification method. PLoS Negl Trop Dis 6:e1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ablordey AS, Vandelannoote K, Frimpong IA et al (2015) Whole genome comparisons suggest random distribution of Mycobacterium ulcerans genotypes in a Buruli ulcer endemic region of Ghana. PLoS Negl Trop Dis 9:e0003681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackumey MM, Gyapong M, Pappoe M et al (2011a) Help-seeking for pre-ulcer and ulcer conditions of Mycobacterium ulcerans disease (Buruli ulcer) in Ghana. Am J Trop Med Hyg 85:1106–1113

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackumey MM, Kwakye-Maclean C, Ampadu EO et al (2011b) Health services for Buruli ulcer control: lessons from a field study in Ghana. PLoS Negl Trop Dis 5:e1187

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackumey MM, Gyapong M, Pappoe M et al (2012a) Illness meanings and experiences for pre-ulcer and ulcer conditions of Buruli ulcer in the Ga-West and Ga-South Municipalities of Ghana. BMC Public Health 12:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Ackumey MM, Gyapong M, Pappoe M et al (2012b) Socio-cultural determinants of timely and delayed treatment of Buruli ulcer: implications for disease control. Infect Dis Poverty 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Adusumilli S, Mve-Obiang A, Sparer T et al (2005) Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol 7:1295–1304

    Article  CAS  PubMed  Google Scholar 

  • Agbenorku P, Agbenorku M, Amankwa A et al (2011) Factors enhancing the control of Buruli ulcer in the Bomfa communities, Ghana. Trans R Soc Trop Med Hyg 105:459–465

    Article  PubMed  Google Scholar 

  • Aiga H, Amano T, Cairncross S et al (2004) Assessing water-related risk factors for Buruli ulcer: a case-control study in Ghana. Am J Trop Med Hyg 71:387–392

    PubMed  Google Scholar 

  • Akoachere J-FK, Nsai FS, Ndip RN (2016) A community based study on the mode of transmission, prevention and treatment of Buruli ulcers in Southwest Cameroon: knowledge, attitude and practices. PLoS One 11:e0156463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Anazi KA, Al-Jasser AM, Al-Anazi WK (2014) Infections caused by non-tuberculous mycobacteria in recipients of hematopoietic stem cell transplantation. Front Oncol 4:311

    PubMed  PubMed Central  Google Scholar 

  • Alexander KA, Laver PN, Michel AL et al (2010) Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis 16:1296-1299.

    Google Scholar 

  • Almeida D, Converse PJ, Ahmad Z et al (2011) Activities of rifampin, rifapentine and clarithromycin alone and in combination against mycobacterium ulcerans disease in mice. PLoS Negl Trop Dis 5:e933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amissah NA, Gryseels S, Tobias NJ et al (2014) Investigating the role of free-living amoebae as a reservoir for Mycobacterium ulcerans. PLoS Negl Trop Dis 8:e3148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amoakoh HB, Aikins M (2013) Household cost of out-patient treatment of Buruli ulcer in Ghana: a case study of Obom in Ga South Municipality. BMC Health Serv Res 13:507

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreoli A, Ruf MT, Sopoh GE et al (2014) Immunohistochemical monitoring of wound healing in antibiotic treated Buruli ulcer patients. PLoS Negl Trop Dis 8:e2809

    Article  PubMed  PubMed Central  Google Scholar 

  • Asiedu K, Etuaful S (1998) Socioeconmoic implications of Buruli ulcer in Ghana: a three-year review. Trans R Soc Trop Med Hyg 59:1015–1022

    Article  CAS  Google Scholar 

  • Barker DJP (1972) The distribution of Buruli disease in Uganda. Trans R Soc Trop Med Hyg 66:867–874

    Article  CAS  PubMed  Google Scholar 

  • Barker DJP, Clancey JK, Rao SK (1972) Mycobacteria on vegetation in Uganda. East Afr Med J 49:667–671

    CAS  PubMed  Google Scholar 

  • Beissner M, Herbinger KH, Bretzel G (2010) Laboratory diagnosis of Buruli ulcer disease. Future Microbiol 5:363–370

    Article  CAS  PubMed  Google Scholar 

  • Benbow M, Williamson H, Kimbirauskus R et al (2008) Aquatic invertebrates as unlikely vectors of Buruli ulcer disease. Emerg Infect Dis 14:1247–1254

    Article  PubMed  PubMed Central  Google Scholar 

  • Benbow ME, Kimbirauskas R, McIntosh MD et al (2013) Aquatic macroinvertebrate assemblages of Ghana, West Africa: understanding the ecology of a neglected tropical disease. EcoHealth:1–16

    Google Scholar 

  • Bentoucha A, Robert J, Dega H et al (2001) Activities of new macrolides and fluoroquinolones against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 45:3109–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolz M, Ruggli N, Ruf MT et al (2014) Experimental infection of the pig with Mycobacterium ulcerans: a novel model for studying the pathogenesis of Buruli ulcer disease. PLoS Negl Trop Dis 8:e2968

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolz M, Ruggli N, Borel N et al (2016) Local cellular immune responses and pathogenesis of Buruli ulcer lesions in the experimental Mycobacterium ulcerans pig infection model. PLoS Negl Trop Dis 10:e0004678

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosio S, Leekha S, Gamb SI et al (2012) Mycobacterium fortuitum prosthetic valve endocarditis: a case for the pathogenetic role of biofilms. Cardiovasc Pathol 21:361–364

    Article  PubMed  Google Scholar 

  • Bozzo C, Tiberio R, Graziola F et al (2010) A Mycobacterium ulcerans toxin, mycolactone, induces apoptosis in primary human keratinocytes and in HaCaT cells. Microbes Infect 12:1258–1263

    Article  CAS  PubMed  Google Scholar 

  • Bratschi MW, Ruf M-T, Andreoli A et al (2014) Mycobacterium ulcerans persistence at a village water source of Buruli ulcer patients. PLoS Negl Trop Dis 8:e2756

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brou T, Broutin H, Elguero E et al (2008) Landscape diversity related to Buruli ulcer disease in Côte d'Ivoire. PLoS Negl Trop Dis 2:e271

    Article  PubMed  PubMed Central  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carolan K, Ebong SMÀ, Garchitorena A et al (2014a) Ecological niche modelling of Hemipteran insects in Cameroon; the paradox of a vector-borne transmission for Mycobacterium ulcerans, the causative agent of Buruli ulcer. Int J Health Geogr 13:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Carolan K, Garchitorena A, García-Peña GE et al (2014b) Topography and land cover of watersheds predicts the distribution of the environmental pathogen Mycobacterium ulcerans in aquatic insects. PLoS Negl Trop Dis 8:e3298

    Article  PubMed  PubMed Central  Google Scholar 

  • Carson C, Lavender CJ, Handasyde KA et al (2014) Potential wildlife sentinels for monitoring the endemic spread of human Buruli ulcer in South-East Australia. PLoS Negl Trop Dis 8:e2668

    Article  PubMed  PubMed Central  Google Scholar 

  • Chany AC, Casarotto V, Schmitt M et al (2011) A diverted total synthesis of mycolactone analogues: an insight into Buruli ulcer toxins. Chemistry 17:14413–14419

    Article  CAS  PubMed  Google Scholar 

  • Chany AC, Tresse C, Casarotto V et al (2013) History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 30:1527–1567

    Article  CAS  PubMed  Google Scholar 

  • Chany AC, Veyron-Churlet R, Tresse C et al (2014) Synthetic variants of mycolactone bind and activate Wiskott-Aldrich syndrome proteins. J Med Chem 57:7382–7395

    Article  CAS  PubMed  Google Scholar 

  • Chauty A, Ardant MF, Adeye A et al (2007) Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans) disease. Antimicrob Agents Chemother 51:4029–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancey JK (1964) Mycobacterial skin ulcers in Uganda: description of a new mycobacterium (Mycobacterium buruli). J Pathol Bacteriol 88:175–187

    Article  CAS  PubMed  Google Scholar 

  • Collins CH, Grange JM, Noble WC et al (1985) Mycobacterium marinum infections in man. J Hyg (Lond) 94:135–149

    Article  CAS  Google Scholar 

  • Comas I, Coscolla M, Luo T et al (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45:1176–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor DH, Lunn HF (1965) Mycobacterium ulcerans infection (with comments on pathogenesis). Int J Lepr 33(Suppl):698–709

    Google Scholar 

  • Conteh L, Engels T, Molyneux DH (2010) Socioeconomic aspects of neglected tropical diseases. Lancet 375:239–247

    Article  PubMed  Google Scholar 

  • Converse PJ, Nuermberger EL, Almeida DV et al (2011) Treating Mycobacterium ulcerans disease (Buruli ulcer): from surgery to antibiotics, is the pill mightier than the knife? Future Microbiol 6:1185–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook KL, Britt JS, Bolster CH (2010) Survival of Mycobacterium avium subsp. paratuberculosis in biofilms on livestock watering trough materials. Vet Microbiol 141:103–109

    Article  CAS  PubMed  Google Scholar 

  • Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26:431–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla M, Lewin A, Metzger S et al (2013) Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg Infect Dis 19:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutanceau E, Marsollier L, Brosch R et al (2005) Modulation of the host immune response by a transient intracellular stage of Mycobacterium ulcerans: the contribution of endogenous mycolactone toxin. Cell Microbiol 7:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Coutanceau E, Decalf J, Martino A et al (2007) Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. J Exp Med 204:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan R, Athan E, Friedman ND et al (2015) Mycobacterium ulcerans treatment – can antibiotic duration be reduced in selected patients? PLoS Negl Trop Dis 9:e0003503

    Article  PubMed  PubMed Central  Google Scholar 

  • Dangy J-P, Scherr N, Gersbach P et al (2016) Antibody-mediated neutralization of the exotoxin mycolactone, the main virulence factor produced by mycobacterium ulcerans. PLoS Negl Trop Dis 10:e0004808

    Article  PubMed  PubMed Central  Google Scholar 

  • Daniel AK, Lee RE, Portaels F et al (2004) Analysis of Mycobacterium species for the presence of a macrolide toxin, mycolactone. Infect Immun 72:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza DK, Quaye C, Mosi L et al (2012) A quick and cost effective method for the diagnosis of Mycobacterium ulcerans infection. BMC Infect Dis 12:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Debacker M, Portaels F, Aguiar J et al (2006) Risk factors for Buruli ulcer, Benin. Emerg Infect Dis 12:1325–1331

    Article  PubMed  PubMed Central  Google Scholar 

  • Dega H, Robert J, Bonnafous P et al (2000) Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 44:2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dega H, Bentoucha A, Robert J et al (2002) Bactericidal activity of rifampin-amikacin against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother 46:3193–3196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demangel C, Stinear T, Cole S (2009) Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7:50–60

    Article  CAS  PubMed  Google Scholar 

  • Diaz D, Dobeli H, Yeboah-Manu D et al (2006) Use of the immunodominant 18-kiloDalton small heat shock protein as a serological marker for exposure to Mycobacterium ulcerans. Clin Vaccine Immunol 13:1314–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobos KM, Spotts EA, Marston BJ et al (2000) Serologic response to culture filtrate antigens of Mycobacterium ulcerans during Buruli ulcer disease. Emerg Infect Dis 6:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doig KD, Holt KE, Fyfe JA et al (2012) On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer. BMC Genomics 13:258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek J, Pfeffer S, Lee PH et al (2014) Protein transport into the human endoplasmic reticulum. J Mol Biol 427(6 Pt A):1159–1175

    PubMed  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2004) Spatial dependency of Buruli ulcer prevalence on arsenic-enriched domains in Amansie West District, Ghana: implications for arsenic mediation in Mycobacterium ulcerans infection. Int J Health Geogr 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Duker AA, Stein A, Hale M (2006) A statistical model for spatial patterns of Buruli ulcer in the Amansie West district, Ghana. Int J Appl Earth Obs Geoinf 8:126–136

    Article  Google Scholar 

  • Durnez L, Suykerbuyk P, Nicolas V et al (2010) Terrestrial small mammals as reservoirs of Mycobacterium ulcerans in Benin. Appl Environ Microbiol 76:4574-4577.

    Google Scholar 

  • Ebong S, Eyangoh S, Marion E et al (2012) Survey of water bugs in Bankim, a new Buruli ulcer endemic area in Cameroon. J Trop Med 123843:8

    Google Scholar 

  • Eddyani M, De Jonckheere JF, Durnez L et al (2008) Occurrence of free-living amoebae in communities of low and high endemicity for Buruli ulcer in Southern Benin. Appl Environ Microbiol 74:6547–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • En J, Goto M, Nakanaga K et al (2008) Mycolactone is responsible for the painlessness of Mycobacterium ulcerans infection (buruli ulcer) in a murine study. Infect Immun 76:2002–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etuaful S, Carbonnelle B, Grosset J et al (2005) Efficacy of the combination rifampin-streptomycin in preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. Antimicrob Agents Chemother 49:3182–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkinham III JO (2009) The biology of environmental mycobacteria. Environ Microbiol Rep 1:477–487

    Article  PubMed  CAS  Google Scholar 

  • Feasey N, Wansbrough-Jones M, Mabey DCW et al (2010) Neglected tropical diseases. Br Med Bull 93:179–200

    Article  PubMed  Google Scholar 

  • Feazel LM, Baumgartner LK, Peterson KL et al (2009) Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA 106:16393–16399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman ND, McDonald AH, Robson ME et al (2012) Corticosteroid use for paradoxical reactions during antibiotic treatment for Mycobacterium ulcerans. PLoS Negl Trop Dis 6:e1767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman ND, Athan E, Hughes AJ et al (2013) Mycobacterium ulcerans disease: experience with primary oral medical therapy in an Australian cohort. PLoS Negl Trop Dis 7:e2315

    Article  PubMed  PubMed Central  Google Scholar 

  • Fyfe JAM, Lavender CJ, Handasyde KA et al (2010) A major role for mammals in the ecology of Mycobacterium ulcerans. PLoS Negl Trop Dis 4:e791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gama JB, Ohlmeier S, Martins TG et al (2014) Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen. PLoS Negl Trop Dis 8:e3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • George KM, Chatterjee D, Gunawardana G et al (1999) Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science 283:854–857

    Article  CAS  PubMed  Google Scholar 

  • George KM, Pascopella L, Welty DM et al (2000) A Mycobacterium ulcerans toxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells. Infect Immun 68:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gooding TM, Kemp AS, Robins-Browne RM et al (2003) Acquired T-helper 1 lymphocyte anergy following infection with Mycobacterium ulcerans. Clin Infect Dis 36:1076–1077

    Article  PubMed  Google Scholar 

  • Gryseels S, Amissah D, Durnez L et al (2012) Amoebae as potential environmental hosts for Mycobacterium ulcerans and other mycobacteria, but doubtful actors in Buruli ulcer epidemiology. PLoS Negl Trop Dis 6:e1764

    Article  PubMed  PubMed Central  Google Scholar 

  • Guenin-Mace L, Carrette F, Asperti-Boursin F et al (2011) Mycolactone impairs T cell homing by suppressing microRNA control of L-selectin expression. Proc Natl Acad Sci USA 108:12833–12838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenin-Mace L, Veyron-Churlet R, Thoulouze MI et al (2013) Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. J Clin Invest 123:1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BS, Hill K, McKenna M et al (2014) The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER. PLoS Pathog 10:e1004061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Brun OS, Polshyna G et al (2006) Mycobacterium marinum biofilm formation reveals cording morphology. FEMS Microbiol Lett 257:43–49

    Article  CAS  PubMed  Google Scholar 

  • Havel A, Pattyn SR (1975) Activity of rifampicin on Mycobacterium ulcerans. Ann Soc Belg Med Trop 55:105–108

    CAS  PubMed  Google Scholar 

  • Hayman J (1991) Mycobacterium ulcerans infection. Lancet 337:124

    Article  CAS  PubMed  Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW et al (1988) Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54:2556–2565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hockmeyer WT, Krieg RE, Reich M et al (1978) Further characterization of Mycobacterium ulcerans toxin. Infect Immun 21:124–128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H, Coutanceau E, Leclerc M et al (2008) Mycolactone diffuses from Mycobacterium ulcerans-infected tissues and targets mononuclear cells in peripheral blood and lymphoid organs. PLoS Negl Trop Dis 2:e325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horsburgh CR, Meyers WM (1997) Buruli ulcer. In: Horsburgh CR, Nelson AM (eds) Pathology of emerging infections. American Society for Microbiology, Washington, DC, pp 119–126

    Google Scholar 

  • Hotez PJ, Fenwick A, Savioli L et al (2009) Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373:1570–1575

    Google Scholar 

  • Huang GKL, Johnson PD (2014) Epidemiology and management of Buruli ulcer. Expert Rev Anti-Infect Ther 12:855–865

    Article  CAS  PubMed  Google Scholar 

  • Huard RC, Fabre M, de Haas P et al (2006) Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 188:4271–4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huminer D, Pitlik SD, Block C et al (1986) Aquarium-borne Mycobacterium marinum skin infection. Report of a case and review of the literature. Arch Dermatol 122:698–703

    Article  CAS  PubMed  Google Scholar 

  • Hurst LC, Amadio PC, Badalamente MA et al (1987) Mycobacterium marinum infections of the hand. J Hand Surg [Am] 12:428–435

    Article  CAS  Google Scholar 

  • Islam MS, Richards JP, Ojha AK (2012) Targeting drug tolerance in mycobacteria: a perspective from mycobacterial biofilms. Expert Rev Anti-Infect Ther 10:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs S, George A, Papanicolaou GA et al (2012) Disseminated Mycobacterium marinum infection in a hematopoietic stem cell transplant recipient. Transpl Infect Dis 14:410–414

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen KH, Padgett JJ (2010) Risk factors for Mycobacterium ulcerans infection. Int J Infect Dis 14:e677–e681

    Article  PubMed  Google Scholar 

  • Janssens P (1972) Skin ulcers caused by acid-fast bacilli. Essays on tropical. Dermatology 2:264–295

    Google Scholar 

  • Ji B, Lefrancois S, Robert J et al (2006) In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother 50:1921–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji B, Chauffour A, Robert J et al (2007) Orally administered combined regimens for treatment of Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 51:3737–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji B, Chauffour A, Robert J et al (2008) Bactericidal and sterilizing activities of several orally administered combined regimens against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother 52:1912–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PDR, Lavender CJ (2009) Correlation between Buruli ulcer and vector-borne notifiable diseases, Victoria, Australia. Emerg Infect Dis 15:614–615

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson PDR, Veitch MGK, Leslie D et al (1996) The emergence of Mycobacterium ulcerans infection near Melbourne. Med J Aust 164:76–78

    CAS  PubMed  Google Scholar 

  • Johnson PDR, Azuolas J, Lavender CJ et al (2007) Mycobacterium ulcerans in mosquitoes captured during outbreak of Buruli ulcer, Southeastern Australia. Emerg Infect Dis 13:1653–1660

    Article  PubMed  PubMed Central  Google Scholar 

  • Junghanss T, Um Boock A, Vogel M et al (2009) Phase change material for thermotherapy of Buruli ulcer: a prospective observational single centre proof-of-principle trial. PLoS Negl Trop Dis 3:e380

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamel G, Youssef M, Haidar R et al (2014) Osteomyelitis at two noncontiguous sites caused by Mycobacterium marinum in an immunocompetent host case report and literature review. J Med Liban 62:180–182

    PubMed  Google Scholar 

  • Kaser M, Rondini S, Naegeli M et al (2007) Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans. BMC Evol Biol 7:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaser M, Hauser J, Pluschke G (2009a) Single nucleotide polymorphisms on the road to strain differentiation in Mycobacterium ulcerans. J Clin Microbiol 47:3647–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaser M, Hauser J, Small P et al (2009b) Large sequence polymorphisms unveil the phylogenetic relationship of environmental and pathogenic mycobacteria related to Mycobacterium ulcerans. Appl Environ Microbiol 75:5667–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenu E, Nyarko KM, Seefeld L et al (2014) Risk factors for buruli ulcer in Ghana-a case control study in the Suhum-Kraboa-Coaltar and Akuapem South Districts of the eastern region. PLoS Negl Trop Dis 8:e3279

    Article  PubMed  PubMed Central  Google Scholar 

  • Klis S, Kingma R, Tuah W et al (2014a) Compliance with antimicrobial therapy for Buruli ulcer. Antimicrob Agents Chemother 58:6340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klis S, Stienstra Y, Phillips RO et al (2014b) Long term streptomycin toxicity in the treatment of Buruli Ulcer: follow-up of participants in the BURULICO drug trial. PLoS Negl Trop Dis 8:e2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kressel AB, Kidd F (2001) Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 22:414–418

    Article  CAS  PubMed  Google Scholar 

  • Kullavanijaya P, Sirimachan S, Bhuddhavudhikrai P (1993) Mycobacterium marinum cutaneous infections acquired from occupations and hobbies. Int J Dermatol 32:504–507

    Article  CAS  PubMed  Google Scholar 

  • Lakhanpal A, Arfon S, McKeon DJ (2011) So, they thought it was all over. BMJ Case Rep 2011

    Google Scholar 

  • Lastoria JC, Abreu MA (2014a) Leprosy: a review of laboratory and therapeutic aspects – part 2. An Bras Dermatol 89:389–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Lastoria JC, Abreu MA (2014b) Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects – part 1. An Bras Dermatol 89:205–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavender CJ, Stinear TP, Johnson PD et al. (2008) Evaluation of VNTR typing for the identification of Mycobacterium ulcerans in environmental samples from Victoria, Australia. FEMS Microbiol Lett 287:250-255.

    Google Scholar 

  • Lavender CJ, Fyfe JAM, Azuolas J et al (2011) Risk of Buruli ulcer and detection of Mycobacterium ulcerans in mosquitoes in Southeastern Australia. PLoS Negl Trop Dis 5

    Google Scholar 

  • Lewis FM, Marsh BJ, von Reyn CF (2003) Fish tank exposure and cutaneous infections due to Mycobacterium marinum: tuberculin skin testing, treatment, and prevention. Clin Infect Dis 37:390–397

    Article  PubMed  Google Scholar 

  • Linell F, Norden A (1954) Mycobacterium balnei, a new acid-fast bacillus occurring in swimming pools and capable of producing skin lesions in humans. Acta Tuberc Scand Suppl 33:1–84

    CAS  PubMed  Google Scholar 

  • Lopez-Castejon G, Brough D (2011) Understanding the mechanism of IL-1beta secretion. Cytokine Growth Factor Rev 22:189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacCallum P, Tolhurst JC, Buckle G et al (1948) A new mycobacterial infection in man. J Pathol Bacteriol 60:93–122

    Article  CAS  PubMed  Google Scholar 

  • Marion E, Eyangoh S, Yeramian E et al (2010) Seasonal and regional dynamics of M. ulcerans transmission in environmental context: deciphering the role of water bugs as hosts and vectors. PLoS Negl Trop Dis 4:e731

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsollier L, Legras P, Manceau A-L et al (2002a) Role des punaises d'eau dans la transmission de M. ulcerans. BULL ALLF or Bulletin de l'ALLF 10:23–25

    Google Scholar 

  • Marsollier L, Robert R, Aubry J et al (2002b) Aquatic insects as a vector for Mycobacterium ulcerans. Appl Environ Microbiol 68:4623–4628

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsollier L, Prevot G, Honore N et al (2003) Susceptibility of Mycobacterium ulcerans to a combination of amikacin/rifampicin. Int J Antimicrob Agents 22:562–566

    Article  CAS  PubMed  Google Scholar 

  • Marsollier L, Severin T, Aubry J et al (2004) Aquatic snails, passive hosts of Mycobacterium ulcerans. Appl Environ Microbiol 70:6296–6298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marston BJ, Diallo MO, Horsburgh JCR et al (1995) Emergence of Buruli ulcer disease in the Daloa region of Cote D'ivoire. Am J Trop Med Hyg 52:219–224

    Google Scholar 

  • Mathers CD, Ezzati M, Lopez AD (2007) Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 1:e114

    Article  PubMed  PubMed Central  Google Scholar 

  • McGann H, Stragier P, Portaels F et al (2009) Buruli ulcer in United Kingdom tourist returning from Latin America. Emerg Infect Dis 15:1827–1829

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh M, Williamson H, Benbow ME et al (2014) Associations between Mycobacterium ulcerans and aquatic plant communities of West Africa: implications for Buruli ulcer disease. EcoHealth 11:184–196

    Article  PubMed  Google Scholar 

  • McKenna M, Simmonds RE, High S (2016) Mechanistic insights into the inhibition of Sec61-dependent co-and post-translational translocation by mycolactone. J Cell Sci 129:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merritt RW, Cummins KW (eds) (1996) An introduction to the aquatic insects of North America, 3rd edn. Kendall/Hunt, Dubuque, IA

    Google Scholar 

  • Merritt RW, Benbow ME, Small PLC (2005) Unraveling an emerging disease associated with disturbed aquatic environments: the case of Buruli ulcer. Front Ecol Environ 3:323–331

    Article  Google Scholar 

  • Merritt RW, Walker ED, Small PL et al (2010) Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis 4:e911

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers W, Connor D, McCullough B et al (1974a) Distribution of Mycobacterium ulcerans infections in Zaire, including the report of new foci. Ann Soc Belg Med Trop 54:147–157

    CAS  PubMed  Google Scholar 

  • Meyers WM, Shelly WM, Connor DH (1974b) Heat treatment of Mycobacterium ulcerans infections without surgical excision. Am J Trop Med Hyg 23:924–929

    Article  CAS  PubMed  Google Scholar 

  • Meyers WM, Shelly WM, Connor DH et al (1974c) Human Mycobacterium ulcerans infections developing at sites of trauma to skin. Am J Trop Med Hyg 23:919–923

    Article  CAS  PubMed  Google Scholar 

  • Moncayo A, Yanine MO. (2007) The neglected diseases and their economic determinants. Encyclopedia of infectious diseases: modern methodologies. Wiley, Hoboken, NJ, pp 603–617.

    Google Scholar 

  • Mve-Obiang A, Lee RE, Portaels F et al (2003) Heterogeneity of mycolactones produced by clinical isolates of Mycobacterium ulcerans: implications for virulence. Infect Immun 71:774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HH, Fadul N, Ashraf MS et al (2015) Osteomyelitis infection of Mycobacterium marinum: a case report and literature review. Case Rep Infect Dis 2015:905920

    PubMed  PubMed Central  Google Scholar 

  • Nienhuis WA, Stienstra Y, Thompson WA et al (2010) Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet 375:664–672

    Article  CAS  PubMed  Google Scholar 

  • Nienhuis WA, Stienstra Y, Abass KM et al (2012) Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis 54:519–526

    Article  PubMed  Google Scholar 

  • Norden A, Linell F (1951) A new type of pathogenic Mycobacterium. Nature 168:826

    Article  CAS  PubMed  Google Scholar 

  • O’Brien DP, McDonald A, Callan P et al (2012) Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study. PLoS Negl Trop Dis 6:e1473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Brien DP, Robson M, Friedman ND et al (2013) Incidence, clinical spectrum, diagnostic features, treatment and predictors of paradoxical reactions during antibiotic treatment of Mycobacterium ulcerans infections. BMC Infect Dis 13:416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Brien DP, Friedman ND, McDonald A et al (2014) Clinical features and risk factors of oedematous Mycobacterium ulcerans lesions in an Australian population: beware cellulitis in an endemic area. PLoS Negl Trop Dis 8:e2612

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogbechi J, Ruf M-T, Hall BS et al (2015) Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions. PLoS Pathog 11:e1005011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojha AK, Trivelli X, Guerardel Y et al (2010) Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285:17380–17389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira MS, Fraga AG, Torrado E et al (2005) Infection with Mycobacterium ulcerans induces persistent inflammatory responses in mice. Infect Immun 73:6299–6310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahlevan AA, Wright DJ, Andrews C et al (1999) The inhibitory action of Mycobacterium ulcerans soluble factor on monocyte/T cell cytokine production and NF-kappa B function. J Immunol 163:3928–3935

    CAS  PubMed  Google Scholar 

  • Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498

    Article  CAS  PubMed  Google Scholar 

  • Phanzu DM, Suykerbuyk P, Imposo DB et al (2011) Effect of a control project on clinical profiles and outcomes in Buruli ulcer: a before/after study in Bas-Congo, Democratic Republic of Congo. PLoS Negl Trop Dis 5:e1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips MS, von Reyn CF (2001) Nosocomial infections due to nontuberculous mycobacteria. Clin Infect Dis 33:1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Phillips R, Horsfield C, Kuijper S et al (2005) Sensitivity of PCR targeting the IS2404 insertion sequence of Mycobacterium ulcerans in an Assay using punch biopsy specimens for diagnosis of Buruli ulcer. J Clin Microbiol 43:3650–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips R, Sarfo FS, Guenin-Mace L et al (2009) Immunosuppressive signature of cutaneous Mycobacterium ulcerans infection in the peripheral blood of patients with buruli ulcer disease. J Infect Dis 200:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • Phillips RO, Sarfo FS, Abass MK et al (2014) Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 58:1161–1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pidot SJ, Porter JL, Marsollier L et al (2010) Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics. PLoS Negl Trop Dis 4:e872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pommelet V, Vincent QB, Ardant MF et al (2014) Findings in patients from Benin with osteomyelitis and polymerase chain reaction-confirmed Mycobacterium ulcerans infection. Clin Infect Dis 59:1256–1264

    Article  PubMed  Google Scholar 

  • Portaels F, Elsen P, Guimaraes-Peres A et al (1999) Insects in the transmission of Mycobacterium ulcerans infection. Lancet 353:986

    Article  CAS  PubMed  Google Scholar 

  • Porten K, Sailor K, Comte E et al (2009) Prevalence of Buruli ulcer in Akonolinga health district, Cameroon: results of a cross sectional survey. PLoS Negl Trop Dis 3:e466

    Article  PubMed  PubMed Central  Google Scholar 

  • Porter JL, Tobias NJ, Hong H et al (2009) Transfer, stable maintenance and expression of the mycolactone polyketide megasynthase mls genes in a recombination-impaired Mycobacterium marinum. Microbiology 155:1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Pouillot R, Matias G, Wondje CM et al (2007) Risk factors for Buruli ulcer: a case control study in Cameroon. PLoS Negl Trop Dis 1:e101

    Article  PubMed  PubMed Central  Google Scholar 

  • Pszolla N, Sarkar MR, Strecker W et al (2003) Buruli ulcer: a systemic disease. Clin Infect Dis 37:e78–e82

    Article  PubMed  Google Scholar 

  • Qi W, Kaser M, Roltgen K et al (2009) Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog 5:e1000580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quek TY, Athan E, Henry MJ et al (2007a) Risk factors for Mycobacterium ulcerans infection, southeastern Australia. Emerg Infect Dis 13:1661-1666.

    Google Scholar 

  • Quek TY, Henry MJ, Pasco JA et al (2007b) Mycobacterium ulcerans infection: factors influencing diagnostic delay. Med J Aust 187:561–563

    PubMed  Google Scholar 

  • Radford AJ (1975) Mycobacterium ulcerans in Australia. Aust NZ J Med 5:162–169

    Article  CAS  Google Scholar 

  • Raghunathan PL, Whitney EA, Asamoa K et al (2005) Risk factors for Buruli ulcer disease (Mycobacterium ulcerans Infection): results from a case-control study in Ghana. Clin Infect Dis 40:1445–1453

    Article  PubMed  Google Scholar 

  • Rallis E, Koumantaki-Mathioudaki E (2007) Treatment of Mycobacterium marinum cutaneous infections. Expert Opin Pharmacother 8:2965–2978

    Article  CAS  PubMed  Google Scholar 

  • Recht J, Kolter R (2001) Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly AF, McGowan KL (2004) Atypical mycobacterial infections in children with cancer. Pediatr Blood Cancer 43:698–702

    Article  PubMed  Google Scholar 

  • Renzaho AM, Woods PV, Ackumey MM et al (2007) Community-based study on knowledge, attitude and practice on the mode of transmission, prevention and treatment of the Buruli ulcer in Ga West District, Ghana. Trop Med Int Health 12:445–458

    Article  PubMed  Google Scholar 

  • Revill WDL, Barker DJP (1972) Seasonal distribution of mycobacterial skin ulcers. Br J Prev Soc Med 26:23–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roche B, Benbow ME, Merritt RW et al (2013) Identifying Achilles’ heel of multi-host pathogens: the concept of keystone “host” species illustrated by Mycobacterium ulcerans transmission. Environ Res Lett 8(4):045009

    Article  PubMed  PubMed Central  Google Scholar 

  • Röltgen K, Pluschke G (2015) Mycobacterium ulcerans disease (Buruli ulcer): potential reservoirs and vectors. Curr Clin Microbiol Rep:1–9

    Google Scholar 

  • Roltgen K, Qi W, Ruf MT et al (2010) Single nucleotide polymorphism typing of Mycobacterium ulcerans reveals focal transmission of buruli ulcer in a highly endemic region of Ghana. PLoS Negl Trop Dis 4:e751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roltgen K, Stinear TP, Pluschke G. (2012) The genome, evolution and diversity of Mycobacterium ulcerans. Infect Genet Evol 12:522–529

    Google Scholar 

  • Röltgen K, Bratschi MW, Ross A et al (2014) Late onset of the serological response against the 18 kDa small heat shock protein of Mycobacterium ulcerans in children. PLoS Negl Trop Dis 8:e2904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth A, Fischer M, Hamid ME et al (1998) Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 36:139–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruf MT, Chauty A, Adeye A et al (2011a) Secondary Buruli ulcer skin lesions emerging several months after completion of chemotherapy: paradoxical reaction or evidence for immune protection? PLoS Negl Trop Dis 5:e1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruf MT, Sopoh GE, Brun LV et al (2011b) Histopathological changes and clinical responses of Buruli ulcer plaque lesions during chemotherapy: a role for surgical removal of necrotic tissue? PLoS Negl Trop Dis 5:e1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruf MT, Schutte D, Chauffour A et al (2012) Chemotherapy-associated changes of histopathological features of Mycobacterium ulcerans lesions in a Buruli ulcer mouse model. Antimicrob Agents Chemother 56:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakyi SA, Aboagye SY, Darko Otchere I et al (2016) Clinical and laboratory diagnosis of Buruli ulcer disease: a systematic review. Can J Infect Dis Med Microbiol 2016:5310718

    PubMed  PubMed Central  Google Scholar 

  • Sarfo FS, Phillips R, Asiedu K et al (2010a) Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 54:3678–3685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarfo FS, Phillips RO, Rangers B et al (2010b) Detection of mycolactone A/B in Mycobacterium ulcerans-infected human tissue. PLoS Negl Trop Dis 4:e577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarfo FS, Le Chevalier F, Aka N et al (2011) Mycolactone diffuses into the peripheral blood of Buruli ulcer patients—implications for diagnosis and disease monitoring. PLoS Negl Trop Dis 5:e1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarfo FS, Converse PJ, Almeida DV et al (2013) Microbiological, histological, immunological, and toxin response to antibiotic treatment in the mouse model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis 7:e2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarfo FS, Phillips RO, Zhang J et al (2014) Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease. BMC Infect Dis 14:202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherr N, Gersbach P, Dangy JP et al (2013) Structure-activity relationship studies on the macrolide exotoxin mycolactone of Mycobacterium ulcerans. PLoS Negl Trop Dis 7:e2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutte D, Pluschke G (2009) Immunosuppression and treatment-associated inflammatory response in patients with Mycobacterium ulcerans infection (Buruli ulcer). Expert Opin Biol Ther 9:187–200

    Article  PubMed  Google Scholar 

  • Schutte D, Um-Boock A, Mensah-Quainoo E et al (2007) Development of highly organized lymphoid structures in Buruli ulcer lesions after treatment with rifampicin and streptomycin. PLoS Negl Trop Dis 1:e2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma R, Lahiri R, Scollard DM et al (2013) The armadillo: a model for the neuropathy of leprosy and potentially other neurodegenerative diseases. Dis Model Mech 6:19–24

    Article  CAS  PubMed  Google Scholar 

  • Silva MT, Portaels F, Pedrosa J (2009) Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect Dis 9:699–710

    Article  PubMed  Google Scholar 

  • Simmonds RE, Lali FV, Smallie T et al (2009) Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism. J Immunol 182:2194–2202

    Article  CAS  PubMed  Google Scholar 

  • Simpson C, O'Brien DP, McDonald A et al (2013) Mycobacterium ulcerans infection: evolution in clinical management. ANZ J Surg 83:523–526

    Article  PubMed  Google Scholar 

  • Snyder DS, Small PL (2003) Uptake and cellular actions of mycolactone, a virulence determinant for Mycobacterium ulcerans. Microb Pathog 34:91–101

    Article  CAS  PubMed  Google Scholar 

  • Sopoh GE, Johnson RC, Chauty A et al (2007) Buruli ulcer surveillance, Benin, 2003–2005. Emerg Infect Dis 13:1374–1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Sopoh G, Johnson R, Anagonou S et al (2011) Buruli ulcer prevalence and altitude, Benin. Emerg Infect Dis 17:153–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl DA, Urbance JW (1990) The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 172:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmack PL, Gray MR, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stinear T, Davies JK, Jenkin GA et al (2000) Identification of Mycobacterium ulcerans in the environment from regions in Southeast Australia in which it is endemic with sequence Capture-PCR. Appl Environ Microbiol 66:3206–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinear TP, Mve-Obiang A, Small PL et al (2004) Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA 101:1345–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stinear TP, Pryor MJ, Porter JL et al (2005) Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans. Microbiology 151:683–692

    Article  CAS  PubMed  Google Scholar 

  • Stinear T, Seemann T, Pidot S et al (2007) Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17:192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson DS (1998) Central venous catheter-related infections due to nontuberculous Mycobacterium species. Pediatr Infect Dis J 17:1163–1164

    Article  CAS  PubMed  Google Scholar 

  • Thomas BS, Bailey TC, Bhatnagar J et al (2014) Mycobacterium ulcerans Infection Imported from Australia to Missouri, USA, 2012. Emerg Infect Dis 20:1876–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias NJ, Seemann T, Pidot SJ et al (2009) Mycolactone gene expression is controlled by strong SigA-like promoters with utility in studies of Mycobacterium ulcerans and buruli ulcer. PLoS Negl Trop Dis 3:e553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torrado E, Adusumilli S, Fraga AG et al (2007a) Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection. Infect Immun 75:3979–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrado E, Fraga AG, Castro AG et al (2007b) Evidence for an intramacrophage growth phase of Mycobacterium ulcerans. Infect Immun 75:977–987

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Kamino H, Walters RF (2008) Mycobacterium marinum infection. Dermatol Online J 14:7

    PubMed  Google Scholar 

  • Trevillyan JM, Johnson PD (2013) Steroids control paradoxical worsening of Mycobacterium ulcerans infection following initiation of antibiotic therapy. Med J Aust 198:443–444

    Article  PubMed  Google Scholar 

  • Trott A (1992) Chronic skin ulcers. Emerg Med Clin North Am 10:823–845

    CAS  PubMed  Google Scholar 

  • Turankar RP, Lavania M, Singh M et al (2012) Dynamics of Mycobacterium leprae transmission in environmental context: deciphering the role of environment as a potential reservoir. Infect Genet Evol 12:121–126.

    Google Scholar 

  • Uganda Buruli Group (1971) Epidemiology of Mycobacterium ulcerans infection (Buruli ulcer) at Kinyara, Uganda, 1971. Trans R Soc Trop Med Hyg 65:763–775

    Article  Google Scholar 

  • Unknown (2002) The Buruli mysteries: unanswered questins surround a growing epidemic. World Health Organization

    Google Scholar 

  • Unknown (2005) Buruli ulcer. Centers for Disease Control and Prevention

    Google Scholar 

  • Unknown (2014) Leprosy. In: Fact sheet Number 101. Centre, World Health Organization Media

    Google Scholar 

  • Unknown (2015) Tuberculosis (TB). World Health Organization Website

    Google Scholar 

  • van der Werf TS, Stienstra Y, Johnson RC et al (2005) Mycobacterium ulcerans disease. Bull World Health Organ 83:785–791

    PubMed  PubMed Central  Google Scholar 

  • van Ravensway J, Benbow ME, Tsonis AA et al (2012) Climate and landscape factors associated with Buruli ulcer incidence in Victoria, Australia. PLoS One 7:e51074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Soolingen D, de Haas PE, Haagsma J et al (1994) Use of various genetic markers in differentiation of Mycobacterium bovis strains from animals and humans and for studying epidemiology of bovine tuberculosis. J Clin Microbiol 32:2425–2433

    PubMed  PubMed Central  Google Scholar 

  • Vandelannoote K, Durnez L, Amissah D et al (2010) Application of real-time PCR in Ghana, a Buruli ulcer-endemic country, confirms the presence of Mycobacterium ulcerans in the environment. FEMS Microbiol Lett 304:191–194

    Article  CAS  PubMed  Google Scholar 

  • Vergne I, Chua J, Singh SB et al (2004a) Cell biology of Mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 20:367–394

    Article  CAS  PubMed  Google Scholar 

  • Vergne I, Fratti RA, Hill PJ et al (2004b) Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 15:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Benbow ME, Brenden TO et al (2008a) Buruli ulcer disease prevalence in Benin, West Africa: associations with land use/cover and the identification of disease clusters. Int J Health Geogr 7:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner T, Benbow ME, Burns M et al (2008b) A landscape-based model for predicting Mycobacterium ulcerans infection (Buruli ulcer disease) presence in Benin, West Africa. EcoHealth 5:69–79

    Article  PubMed  Google Scholar 

  • Wallace JR, Gordon MC, Hartsell L et al (2010) Interaction of Mycobacterium ulcerans with mosquito species: implications for transmission and trophic relationships. Appl Environ Microbiol 76:6215–6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BJ, Hauck FR, Houp E et al (2009) Buruli ulcer in West Africa: strategies for early detection and treatment in the antibiotic era. East Afr J Public Health 6:144–147

    PubMed  Google Scholar 

  • WHO (2000a) Buruli ulcer: Mycobacterium infection. Geneva, Switzerland.

    Google Scholar 

  • WHO (2000b) Buruli ulcer. Mycobacterium ulcerans infection. In: Asiedu K, Scherpbier R, Raviglione M (eds) WHOICDS/CPE/GBUIM. WHO, Geneva

    Google Scholar 

  • WHO (2004a) Changing history: the world health report 2004. WHO, Geneva

    Google Scholar 

  • WHO (2004b) Report of the World Health Organization 7th advisory group meeting on Buruli ulcer, 8–11 March 2004, Geneva, Switzerland. World Health Organization, Geneva

    Google Scholar 

  • WHO (2004c) Resolution WHA571. Surveillance and control of Mycobacterium ulcerans disease (Buruli ulcer). In: Fifty-Seventh World Health Assembly, Geneva. World Health Organization, Geneva

    Google Scholar 

  • WHO (2006) Neglected tropical diseases: hidden successes, emerging opportunities. World Health Organization, Geneva

    Google Scholar 

  • WHO (2008) Provisional guidance on the role of specific antibiotics in the management of Mycobacterium ulcerans disease (Buruli ulcer). WHO, Geneva

    Google Scholar 

  • WHO (2012) Treatment of Mycobacterium ulcerans disease (Buruli ulcer); guidance for health workers, Geneva

    Google Scholar 

  • WHO (2015) Global tuberculosis report. World Health Organization, Geneva

    Google Scholar 

  • Williamson HR, Benbow ME, Nguyen KD et al (2008) Distribution of Mycobacterium ulcerans in buruli ulcer endemic and non-endemic aquatic sites in Ghana. PLoS Negl Trop Dis 2:e205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson HR, Benbow ME, Campbell LP et al (2012a) Detection of Mycobacterium ulcerans in the environment predicts prevalence of Buruli ulcer in Benin. PLoS Negl Trop Dis 6:9

    Article  Google Scholar 

  • Williamson HR, Benbow ME, Campbell LP et al (2012b) Detection of Mycobacterium ulcerans in the environment predicts prevalence of Buruli ulcer in Benin. PLoS Negl Trop Dis 6:e1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson HR, Mosi L, Donnell R et al (2014) Mycobacterium ulcerans fails to infect through skin abrasions in a guinea pig infection model: implications for transmission. PLoS Negl Trop Dis 8:e2770

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Danelishvili L, Wu M et al (2006a) The ability to form biofilm influences Mycobacterium avium invasion and translocation of bronchial epithelial cells. Cell Microbiol 8:806–814

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Danelishvili L, Wu M et al (2006b) Mycobacterium avium genes associated with the ability to form a biofilm. Appl Environ Microbiol 72:819–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeboah-Manu D, Roltgen K, Opare W et al (2012) Sero-epidemiology as a tool to screen populations for exposure to Mycobacterium ulcerans. PLoS Negl Trop Dis 6:e1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeboah-Manu D, Kpeli GS, Ruf MT et al (2013) Secondary bacterial infections of buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin. PLoS Negl Trop Dis 7:e2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavattaro E, Boccafoschi F, Borgogna C et al (2012) Apoptosis in Buruli ulcer: a clinicopathological study of 45 cases. Histopathology 61:224–236

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eric Benbow .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

Funding: This chapter was funded in part by Grant Number R01TW007550 from the Fogarty International Center through the NIH/NSF Ecology of Infectious Diseases Program and grant number R03AI062719. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Fogarty International Center or the National Institutes of Health.

Conflict of Interest: M. Eric Benbow declares that he/she has no conflict of interest. Rachel Simmonds declares that he/she has no conflict of interest. Richard W. Merritt declares that he/she has no conflict of interest. Heather R. Jordan declares that he/she has no conflict of interest.

Ethical approval: This chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Eric Benbow, M., Simmonds, R., Merritt, R.W., Jordan, H.R. (2017). Buruli Ulcer: Case Study of a Neglected Tropical Disease. In: Hurst, C. (eds) Modeling the Transmission and Prevention of Infectious Disease. Advances in Environmental Microbiology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-60616-3_5

Download citation

Publish with us

Policies and ethics