Skip to main content

Disinfection of Microbial Aerosols

  • Chapter
  • First Online:
Modeling the Transmission and Prevention of Infectious Disease

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 4))

Abstract

Disinfection of microbial aerosols gained significant attention among researchers worldwide due to increasing flu pandemics and bioterrorism threats. Ultraviolet germicidal irradiation, HEPA filtration, and photocatalytic oxidation are conventional methods of bioaerosol inactivation, and new approaches developed in recent years include application of cold plasma and plasmacluster ions, microwave irradiation, ion emission, thermal treatment, applications of nanoparticles and nanotubes in filtration media, and application of natural products in filtration media. Although all these methods have shown promising responses for airborne microbial inactivation, they have some inevitable limitations. Most of the methods were tested in the laboratories, and adequate field data are still lacking. Furthermore, most of these methods were never tested for real pathogens and emerging drug-resistant pathogens. Advantages and disadvantages of all these conventional and newly developed approaches have been discussed in this review article. The authors conclude that a perfect solution to inactivate all airborne microorganisms does not exist yet. We can combine different microbial inactivation methods to achieve a more effective disinfection approach depending on the types of suspected microorganisms and indoor environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brady-Estévez AS, Schnoor MH, Kang S et al (2010) SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation. Langmuir 26:19153–19158

    Article  PubMed  Google Scholar 

  • Centers for Disease Control (1994) Guidelines for preventing the transmission of Mycobacterium tuberculosis in health care facilities. MMWR Recomm Rep 43:1–132

    Google Scholar 

  • Cram N, Shipman N, Quarles JM (2004) Reducing airborne microbes in the surgical operating theater and other clinical settings: a study utilizing a unique photocatalytic reactor biocide unit. J Clin Eng April–June:79–88

    Article  Google Scholar 

  • Deng XT, Shi JJ, Kong MG (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316

    Article  Google Scholar 

  • Douwes J, Thorne P, Pearce N et al (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47:187–200

    CAS  PubMed  Google Scholar 

  • Edwards MR, Bartlett NW, Hussell T et al (2012) The microbiology of asthma. Nat Rev Immunol 10:459–471

    CAS  Google Scholar 

  • Electronics SHARP (2005) Sharp’s plasmacluster ions effectively deactivate H5N1 avian influenza virus. Asia Pacific Biotech News 6:469

    Google Scholar 

  • Fletcher LA, Gaunt LF, Beggs CB et al (2007) Bactericidal action of positive and negative ions in air. BMC Microbiol 7:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Fraser C, Donnelly CA, Cauchemez S et al (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324:1557–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher MJ, Gallagher J, Vaze N et al (2007) Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans Plasma Sci 35:1501–1510

    Article  CAS  Google Scholar 

  • Gosden PE, MacGowan AP, Bannister GC (1998) Importance of air quality and related factors in the prevention of infection in orthopedic implant surgery. J Hosp Infect 39:173–180

    Article  CAS  PubMed  Google Scholar 

  • Goswami DY, Trivedi DM, Block SS (1997) Photocatalytic disinfection of indoor air. J Sol Energy Eng 119:92–96

    Article  CAS  Google Scholar 

  • Grinshpun SA, Adhikari A, Honda T et al (2007) Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ Sci Technol 41:606–612

    Article  CAS  PubMed  Google Scholar 

  • Grinshpun SA, Adhikari A, Li C et al (2010a) Thermal inactivation of airborne viable Bacillus subtilis spores by short-term exposure in axially heated air flow. J Aerosol Sci 41:352–363

    Article  CAS  Google Scholar 

  • Grinshpun SA, Li C, Adhikari A et al (2010b) Method for studying survival of airborne viable microorganisms in combustion environments: development and evaluation. Aerosol Air Qual Res 10:414–424

    Google Scholar 

  • Guan T, Yao M (2010) Use of carbon nanotube filter in removing bioaerosols. J Aerosol Sci 6:611–620

    Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  CAS  PubMed  Google Scholar 

  • Henderson D (2004) The threat of aerosolized biological weapons. ASHRAE J 46:50–53

    Google Scholar 

  • Hillman P, Gebremedhin K, Warner R (1992) Ventilation system to minimize airborne bacteria, dust, humidity, and ammonia in calf nurseries. J Dairy Sci 75:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Pyankov OV, Yu B et al (2010) Inactivation of fungal spores collected on fibrous filters by Melaleuca alternifolia (Tea Tree Oil). Aerosol Sci Technol 44:262–268

    Article  CAS  Google Scholar 

  • Inouye S, Abe S, Yamaguchi H et al (2003) Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int J Aromather 13:33–41

    Article  Google Scholar 

  • International Agency for Research on Cancer (1992) Monographs on the evaluation of carcinogenic risks to humans: solar and ultraviolet radiation, vol 55. WHO International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Jung JH, Lee JE, Lee CH et al (2009) Treatment of fungal bioaerosols by a high temperature, short-time process in a continuous flow system. Appl Environ Microbiol 75:2742–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653

    Article  CAS  PubMed  Google Scholar 

  • Keller V, Keller N, Ledoux MJ et al (2005) Biological agent inactivation in a flowing air stream by photocatalysis. Chem Commun (Camb) June 21(23):2918–2920

    Article  Google Scholar 

  • Kethley TW, Branch K (1972) Ultraviolet lamps for room air disinfection’ effect of sampling location and particle size of bacterial aerosol. Arch Environ Health 25:205–214

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Yoon KY, Park JH et al (2011) Application of air ions for bacterial decolonization in air filters contaminated by aerosolized bacteria. Sci Total Environ 409:748–755

    Article  CAS  PubMed  Google Scholar 

  • Ko G, First MW, Burge HA (2002) The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms. Environ Health Perspect 110:95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortepeter M, Parker G (1999) Potential biological weapons threats. Emerg Infect Dis 5:523–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-K (2001) Electrical sterilization of Escherichia coli by electrostatic atomization. J Electrostatics 51–52:71–75

    Article  Google Scholar 

  • Lee YH, Lee BU (2006) Inactivation of airborne E. coli and B. subtilis bioaerosols utilizing thermal energy. J Microbiol Biotechnol 16:1684–1689

    CAS  Google Scholar 

  • Lee BU, Yoon K-Y, Bae G-N et al (2006) Airborne silver nanoparticles from an atomizer as an antimicrobial agent against E. coli bioaerosols. Proc Healthy Build 2006:345–348

    Google Scholar 

  • Liang Y, Wu Y, Sun K et al (2012) Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma. Environ Sci Technol 46:3360–3368

    Article  CAS  PubMed  Google Scholar 

  • Macher JM (1993) The use of germicidal lamps to control tuberculosis in healthcare facilities. Infect Control Hosp Epidemiol 14:723–729

    Article  CAS  PubMed  Google Scholar 

  • Macher JM, Aleantils LE, Chang Y-L et al (1992) Effect of ultra-violet germicidal lamps on airborne microorganisms in an outpatient waiting room. Appl Occup Environ Hyg 7:505–513

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock Biology of microorganisms, 11th edn. Pearson Prentice Hall, Upper Saddle River, NJ, p 52, 673

    Google Scholar 

  • Marin V, Moretti G, Rassu M (1989) Effects of ionization of the air on some bacterial strains. Annali di Igiene 1:1491–1500

    CAS  PubMed  Google Scholar 

  • Nakamura H (1987) Sterilization efficiency of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems. Bull Tokyo Med Dentistry Univ 34:25–40

    CAS  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (1972) Criteria for a recommended standard. Occupational exposure to ultraviolet radiation. Publication No. HSM 73-11009. Department of Health and Human Services, Cincinnati, OH

    Google Scholar 

  • Opel SM, Asp AA, Cannady PB Jr et al (1986) Efficacy of infection control measures during a nosocomial outbreak of disseminated aspergillosis associated with hospital construction. J Infect Dis 153:634–637

    Article  Google Scholar 

  • Pal A, Min X, LE Y et al (2005) Photocatalytic inactivation of bioaerosols by TiO2 coated membrane. Int J Chem Reactor Eng 3:1542–6580

    Article  Google Scholar 

  • Park DK, Bitton G, Melker R (2006) Microbial inactivation by microwave radiation in the home environment. J Environ Health 69:17–24

    PubMed  Google Scholar 

  • Park CW, Byeon JH, Yoon KY et al (2011) Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Sep Purif Technol 77:87–93

    Article  CAS  Google Scholar 

  • Peccia J, Hernandez M (2001) Photoreactivation in airborne Mycobacterium parafortuitum. Appl Environ Microbiol 67:4225–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peccia J, Werth HM, Miller S et al (2001) Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria. Aerosol Sci Technol 35:728–740

    Article  CAS  Google Scholar 

  • Pham TD, Lee BK (2014) Effects of Ag doping on the photocatalytic disinfection of E. coli in bioaerosol by Ag-TiO2/GF under visible light. J Colloid Interface Sci 428:24–31

    Article  CAS  PubMed  Google Scholar 

  • Pibiri MC, Seignez C, Roulet CA (2003) Methods to study the effect of essential oils on microbes present in ventilation systems. CISBAT, p 185–190

    Google Scholar 

  • Pyankov OV, Agranovski IE, Huang R et al (2008) Removal of biological aerosols by oil coated filters. Clean Soil Air Water 36:609–614

    Article  CAS  Google Scholar 

  • Pyankov OV, Usachev EV, Pyankova O et al (2012) Inactivation of airborne influenza virus by tea tree and eucalyptus oils. Aerosol Sci Technol 46:1295–1302

    Article  CAS  Google Scholar 

  • Riley RL, O’Grady F (1961) Airborne infection. MacMillan, New York

    Google Scholar 

  • Riley RL, Mills CC, O’Grady F et al (1962) Infectiousness of air from a tuberculosis ward. Am Rev Resp Dis 85:511–525

    CAS  PubMed  Google Scholar 

  • Riley RL, Knight M, Middlebrook G (1976) Ultraviolet susceptibility of BCG and virulent tubercle bacilli. Am Rev Resp Dis 113:413–418

    CAS  PubMed  Google Scholar 

  • Salie F, Scarpino P, Clark S et al (1995) Laboratory evaluation of airborne microbial reduction by an ultraviolet light positioned in a modified hollow ceiling fan blade. Am Ind Hyg Assoc J 56:987–992

    Article  Google Scholar 

  • Sanzén L, Carlsson AS, Walder M (1990) Air contamination during total hip arthroplasty in an ultraclean air enclosure using different types of staff clothing. J Arthroplasty 6:127–130

    Article  Google Scholar 

  • Scarpino PV, Stoeckel DM, Jensen PA (1994) Ability of a fan-powered UVGI unit to inactivate selected airborne bacteria (abstract). Conference of the Society of Occupational and Environmental Health, Preventing TB in the Workplace: Principles and Practices for Controlling Transmission, Rockville, Maryland, December 1994

    Google Scholar 

  • Seo KH, Mitchell BW, Holt PS et al (2001) Bactericidal effects of negative ions on airborne and surface Salmonella enteriditis from an artificially generated aerosol. J Food Protec 64:113–116

    Article  CAS  Google Scholar 

  • Shargavi JM, Theaker ED, Drucker DB et al (1999) Sensitivity of Candida albicans to negative air ion streams. J Appl Microbiol 87:889–897

    Article  Google Scholar 

  • Sharma A, Pruden A, Yu Z et al (2005) Bacterial inactivation in open air by the afterglow plume emitted from a grounded hollow slot electrode. Environ Sci Technol 39:339–344

    Article  CAS  PubMed  Google Scholar 

  • Sharp DG (1940) The effects of ultraviolet light on bacteria suspended in air. J Bact 39:535–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherertz RJ, Belani A, Kramer BS et al (1987) Impact of air filtration on nosocomial Aspergillus infections. Am J Med 83:709–718

    Article  CAS  PubMed  Google Scholar 

  • Stead WW, Yeung C, Hartnett C (1996) Probable role of ultraviolet irradiation in preventing transmission of tuberculosis: a case study. Infect Control Hosp Epidemiol 17:11–13

    Article  CAS  PubMed  Google Scholar 

  • Sterenborg HJ, van der Putte SC, van der Leun JC (1988) The dose response relationship of tumorigenesis by ultraviolet radiation of 254 nm. Photochem Photobiol 47:245–253

    Article  CAS  PubMed  Google Scholar 

  • Vaze ND, Gallagher MJ, Park S et al (2010) Inactivation of bacteria in flight by direct exposure to non-thermal plasma. IEEE Trans Plasma Sci 38:3234–3240

    Article  Google Scholar 

  • Vohra A, Goswami DY, Deshpande DA et al (2006) Enhanced photocatalytic disinfection of indoor air. Appl Catal B: Environ 64:57–65

    Article  CAS  Google Scholar 

  • Wells WF (1942) Radiation disinfection of air. Arch Physic Therapy 23:143–148

    Google Scholar 

  • Wells WF (1955) Airborne contagion and air hygiene. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wells WF, Wells MW (1936) Airborne infection. JAMA 107:1805–1809

    Article  Google Scholar 

  • Whyte W, Vesley D, Hodgson R (1976) Bacterial dispersion in relation to operating room clothing. J Hyg 76:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods JE (1989) Cost avoidance and productivity in owning and operating buildings. J Occup Med 4:753–770

    CAS  Google Scholar 

  • Woods JE, Rask CR (1988) Heating ventilation, air conditioning systems; the enlightening approach to methods of control. In: Kandsin RB (ed) Architectural design and indoor microbial pollution. Oxford University Press, New York, pp 123–163

    Google Scholar 

  • Wu Y, Yao M (2010) Inactivation of bacteria and fungus aerosols using microwave irradiation. J Aerosol Sci 41:682–693

    Article  CAS  Google Scholar 

  • Xu P, Peccia J, Fabian P et al (2002) Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spore and Mycobacteria in full-scale studies. Atmos Environ 37:405–419

    Article  CAS  Google Scholar 

  • Xu P, Kujundzic E, Peccia J et al (2005) Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria. Environ Sci Technol 39:9656–9664

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Huang Y-C, Luo C-H et al (2011) Inactivation efficiency of bioaerosols using carbon nanotube plasma. Clean Soil Air Water 39:201–205

    Article  CAS  Google Scholar 

  • Zhang Q, Damit B, Welch J (2010) Microwave-assisted nanofibrous air filtration for disinfection of bioaerosols. J Aerosol Sci 41:880–888

    Article  CAS  Google Scholar 

  • Zmudzka BZ, Beer J (1990) Activation of human immunodeficiency virus by ultraviolet radiation. Photochem Photobiol 52:1153–1162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atin Adhikari .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

Conflict of Interest: Atin Adhikari declares that he has no conflict of interest. Scott Clark declares that he has no conflict of interest.

Ethical approval: This chapter does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Adhikari, A., Clark, S. (2017). Disinfection of Microbial Aerosols. In: Hurst, C. (eds) Modeling the Transmission and Prevention of Infectious Disease. Advances in Environmental Microbiology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-60616-3_3

Download citation

Publish with us

Policies and ethics