Skip to main content

White Dwarf Planetary Systems: Insights Regarding the Fate of Planetary Systems

  • Chapter
  • First Online:
Formation, Evolution, and Dynamics of Young Solar Systems

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 445))

Abstract

Planetary material accreted by white dwarfs provides critical insights regarding the composition of planetary material . The analysis of polluted white dwarfs suggests that rocky planetary material similar in composition to bulk Earth is common, and that differentiation and collisions play a key role in planetary systems. Infrared observations track the accretion of dusty planetary material in disks that share many similarities with Saturn’s rings, as well as proto-planetary disks. Planetary material arrives close to the star, scattered inwards from an outer planetary systems that has survived the star’s evolution. White dwarf planetary systems provide key observational constraints that enable us to study the evolution of planetary systems under extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Out of all the dusty white dwarfs, eight of them display double peaked emission lines from a circumstellar gas disk . Some of the gas lines also change on yearly timescale (e.g. Gänsicke et al. 2006). However, the detailed discussion about these systems is beyond the scope of this review.

References

  • Aumann, H.H., Beichman, C.A., Gillett, F.C., de Jong, T., Houck, J.R., Low, F.J., Neugebauer, G., Walker, R.G., Wesselius, P.R.: Discovery of a shell around Alpha Lyrae. Astrophys. J. Lett. 278, L23–L27 (1984), doi:10.1086/184214

    Article  ADS  Google Scholar 

  • Barber, S.D., Patterson, A.J., Kilic, M., Leggett, S.K., Dufour, P., Bloom, J.S., Starr, D.L.: The frequency of debris disks at white dwarfs. Astrophys. J. 760(1), Article ID. 26, 11 pp. (2012). doi:10.1088/0004-637X/760/1/26

    Google Scholar 

  • Benz, W., Slattery, W.L., Cameron, A.G.W.: Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988). doi:10.1016/0019-1035(88)90118-2

    Article  ADS  Google Scholar 

  • Bochkarev, K.V., Rafikov, R.R.: Global modeling of radiatively driven accretion of metals from compact debris disks onto white dwarfs. Astrophys. J. 741(1), Article ID. 36, 9 pp. (2011). doi:10.1088/0004-637X/741/1/36

    Google Scholar 

  • Bond, J.C., O’Brien, D.P., Lauretta, D.S.: The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Astrophys. J. 715, 1050–1070 (2010). doi:10.1088/0004-637X/715/2/1050, 1004.0971

    Google Scholar 

  • Bonsor, A., Veras, D.: A wide binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015). doi:10.1093/mnras/stv1913, 1508.05715

    Google Scholar 

  • Bonsor, A., Wyatt, M.: Post-main-sequence evolution of A star debris discs. Mon. Not. R. Astron. Soc. 409, 1631–1646 (2010). doi:10.1111/j.1365-2966.2010.17412.x, 1007.4517

    Google Scholar 

  • Bonsor, A., Mustill, A.J., Wyatt, M.C.: Dynamical effects of stellar mass-loss on a Kuiper-like belt. Mon. Not. R. Astron. Soc. 414, 930–939 (2011), doi:10.1111/j.1365-2966.2011.18524.x, 1102.3185

    Google Scholar 

  • Bonsor, A., Raymond, S.N., Augereau, J.C.: The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. Mon. Not. R. Astron. Soc. 433, 2938–2945 (2013). doi:10.1093/mnras/stt933, 1306.0592

    Google Scholar 

  • Bonsor, A., Farihi, J., Wyatt, M.C., Van Lieshout, R.: Mon. Not. R. Astron. Soc. 468, 154 (2017)

    Article  ADS  Google Scholar 

  • Brassard, P., Fontaine, G., Dufour, P., Bergeron, P.: The origin and evolution of DQ white dwarfs: the carbon pollution problem revisited. In: Napiwotzki, R., Burleigh, M.R. (eds.) 15th European Workshop on White Dwarfs, Astronomical Society of the Pacific Conference Series, vol. 372, p. 19 (2007)

    Google Scholar 

  • Croll, B., Dalba, P.A., Vanderburg, A., Eastman, J., Rappaport, S., DeVore, J., Bieryla, A., Muirhead, P.S., Han, E., Latham, D.W., Beatty, T.G., Wittenmyer, R.A., Wright, J.T., Johnson, J.A., McCrady, N.: Multiwavelength transit observations of the candidate disintegrating planetesimals orbiting WD 1145+017. (2015). ArXiv e-prints 1510.06434

    Google Scholar 

  • Debes, J.H., Sigurdsson, S.: Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002). doi:10.1086/340291, astro-ph/0202273

    Google Scholar 

  • Debes, J.H., Hoard, D.W., Kilic, M., Wachter, S., Leisawitz, D.T., Cohen, M., Kirkpatrick, J.D., Griffith, R.L.: The WIRED survey. I. A bright IR excess due to dust around the heavily polluted white Dwarf Galex J193156.8+011745. Astrophys. J. 729(1), Article ID. 4, 6 pp. (2011). doi:10.1088/0004-637X/729/1/4

    Google Scholar 

  • Debes, J.H., Walsh, K.J., Stark, C.: The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. Astrophys. J. 747, 148 (2012). doi:10.1088/0004-637X/747/2/148, 1201.0756

    Google Scholar 

  • Dufour, P., Bergeron, P., Liebert, J., Harris, H.C., Knapp, G.R., Anderson, S.F., Hall, P.B., Strauss, M.A., Collinge, M.J., Edwards, M.C.: On the spectral evolution of cool, helium-atmosphere white dwarfs: detailed spectroscopic and photometric analysis of DZ stars. Astrophys. J. 663, 1291–1308 (2007). doi:10.1086/518468, astro-ph/0703758

    Google Scholar 

  • Duncan, M.J., Lissauer, J.J.: The effects of post-main-sequence solar mass loss on the stability of our planetary system. Icarus 134, 303–310 (1998). doi:10.1006/icar.1998.5962

    Article  ADS  Google Scholar 

  • Farihi, J.: Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 71, 9–34 (2016) doi:10.1016/j.newar.2016.03.001

    Article  ADS  Google Scholar 

  • Farihi, J., Jura, M., Zuckerman, B.: Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694, 805–819 (2009). doi:10.1088/0004-637X/694/2/805, 0901.0973

    Google Scholar 

  • Farihi, J., Gänsicke, B.T., Steele, P.R., Girven, J., Burleigh, M.R., Breedt, E., Koester, D.: A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess. Mon. Not. R. Astron. Soc. 421, 1635–1643 (2012). doi:10.1111/j.1365-2966.2012.20421.x, 1112.5163

    Google Scholar 

  • Farihi, J., Gänsicke, B.T., Koester, D.: Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342, 218–220 (2013), doi:10.1126/science.1239447, 1310.3269

    Google Scholar 

  • Foley, B.J., Bercovici, D., Landuyt, W.: The conditions for plate tectonics on super-Earths: Inferences from convection models with damage. Earth Planet. Sci. Lett. 331, 281–290 (2012). doi:10.1016/j.epsl.2012.03.028

    Article  ADS  Google Scholar 

  • Frewen, S.F.N., Hansen, B.M.S.: Eccentric planets and stellar evolution as a cause of polluted white dwarfs. Mon. Not. R. Astron. Soc. 439, 2442–2458 (2014). doi:10.1093/mnras/stu097, 1401.5470

    Google Scholar 

  • Gänsicke, B.T., Marsh, T.R., Southworth J, Rebassa-Mansergas A (2006) A gaseous metal disk around a white dwarf. Science 314:1908, doi:10.1126/science.1135033, astro-ph/0612697

    Google Scholar 

  • Gänsicke, B.T., Aungwerojwit, A., Marsh, T.R., Dhillon, V.S., Sahman, D.I., Veras, D., Farihi, J., Chote, P., Ashley, R., Arjyotha, S., Rattanasoon, S., Littlefair, S.P., Pollacco, D., Burleigh, M.R.: High-speed photometry of the disintegrating planetesimals at WD1145+017: evidence for rapid dynamical evolution. Astrophys. J. Lett. 818, L7 (2016). doi:10.3847/2041-8205/818/1/L7, 1512.09150

    Google Scholar 

  • Gary, B.L., Rappaport, S., Kaye, T.G., Alonso, R., Hambschs, F.J.: WD 1145+017 photometric observations during eight months of high activity. Mon. Not. R. Astron. Soc. 465, 3267–3280 (2017). doi:10.1093/mnras/stw2921, 1608.00026

    Google Scholar 

  • Girven, J., Brinkworth, C.S., Farihi, J., Gänsicke, B.T., Hoard, D.W., Marsh, T.R., Koester, D.: Constraints on the lifetimes of disks resulting from tidally destroyed rocky planetary bodies. Astrophys. J. 749, 154 (2012). doi:10.1088/0004-637X/749/2/154, 1202.3784

    Google Scholar 

  • Graham, J.R., Matthews, K., Neugebauer, G., Soifer, B.T.: The infrared excess of G29-38 - a brown dwarf or dust? Astrophys. J. 357, 216–223 (1990a). doi:10.1086/168907

    Google Scholar 

  • Graham, J.R., Reid, I.N., McCarthy, J.K., Rich, R.M.: Does G29-38 have a massive companion? Astrophys. J. Lett. 357, L21–L24 (1990b). doi:10.1086/185757

    Google Scholar 

  • Haas, M., Leinert, C.: Search for the suspected brown dwarf companion to Giclas 29-38 using IR-slit-scans. Astron. Astrophys. 230, 87–90 (1990)

    Google Scholar 

  • Hoard, D.W., Debes, J.H., Wachter, S., Leisawitz, D.T., Cohen, M.: The WIRED survey. IV. New dust disks from the McCook & Sion White Dwarf catalog. Astrophys. J. 770(1), Article ID. 21, 14 pp. (2013). doi:10.1088/0004-637X/770/1/21

    Google Scholar 

  • Jura, M.: A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. Lett. 584, L91–L94 (2003). doi:10.1086/374036, astro-ph/0301411

    Google Scholar 

  • Jura, M., Xu, S.: Water fractions in extrasolar planetesimals. Astron. J. 143, 6 (2012). doi:10.1088/0004-6256/143/1/6, 1110.1774

    Google Scholar 

  • Jura, M., Young, E.D.: Extrasolar cosmochemistry. Annu. Rev. Earth Planet. Sci. 42, 45–67 (2014). doi:10.1146/annurev-earth-060313-054740

    Article  ADS  Google Scholar 

  • Jura, M., Farihi, J., Zuckerman, B., Becklin, E.E.: Infrared emission from the dusty disk orbiting GD 362, an externally polluted white dwarf. Astron. J 133, 1927–1933 (2007). doi:10.1086/512734, astro-ph/0701469

    Google Scholar 

  • Jura, M., Farihi, J., Zuckerman, B.: Six white dwarfs with circumstellar silicates. Astron. J. 137, 3191–3197 (2009). doi:10.1088/0004-6256/137/2/3191, 0811.1740

    Google Scholar 

  • Jura, M., Xu, S., Young, E.D.:26Al in the early solar system: not so unusual after all. Astrophys. J. Lett. 775, L41 (2013). doi:10.1088/2041-8205/775/2/L41, 1308.6325

    Google Scholar 

  • Jura, M., Klein, B., Xu, S., Young, E.D.: A pilot search for evidence of extrasolar earth-analog plate tectonics. Astrophys. J. Lett. 791, L29 (2014). doi:10.1088/2041-8205/791/2/L29, 1407.5923

    Google Scholar 

  • Jura, M., Dufour, P., Xu, S., Zuckerman, B., Klein, B., Young, E.D., Melis, C.: Evidence for an anhydrous carbonaceous extrasolar minor planet. Astrophys. J. 799, 109 (2015). doi:10.1088/0004-637X/799/1/109, 1411.5036

    Google Scholar 

  • Kaib, N.A., Raymond, S.N., Duncan, M.: Planetary system disruption by Galactic perturbations to wide binary stars. Nature 493, 381–384 (2013). doi:10.1038/nature11780, 1301.3145

    Google Scholar 

  • Koester, D., Provencal, J., Shipman, H.L.: Metals in the variable DA G29-38. Astron. Astrophys. 320, L57–L59 (1997)

    Google Scholar 

  • Koester, D., Girven, J., Gänsicke, B.T., Dufour, P.: Cool DZ white dwarfs in the SDSS. Astron. Astrophys. 530, A114 (2011). doi:10.1051/0004-6361/201116816, 1105.0268

    Google Scholar 

  • Koester, D., Gänsicke, B.T., Farihi, J.: The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014). doi:10.1051/0004-6361/201423691, 1404.2617

    Google Scholar 

  • Larimer, J.W.: Chemical fractionations in meteorites – I. Condensation of the elements. Geochim. Cosmochim. Acta 31, 1215–1238 (1967). doi:10.1016/S0016-7037(67)80013-9

    Article  ADS  Google Scholar 

  • Lecar, M., Podolak, M., Sasselov, D., Chiang, E.: On the location of the snow line in a protoplanetary disk. Astrophys. J. 640, 1115–1118 (2006). doi:10.1086/500287, astro-ph/0602217

    Google Scholar 

  • Lodders, K.: Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2006). doi:10.1086/375492

    Article  ADS  Google Scholar 

  • Metzger, B.D., Rafikov, R.R., Bochkarev, K.V.: Global models of runaway accretion in white dwarf debris discs. Mon. Not. R. Astron. Soc. 423, 505–528 (2012). doi:10.1111/j.1365-2966.2012.20895.x, 1202.0557

    Google Scholar 

  • Moriarty, J., Madhusudhan, N., Fischer, D.: Chemistry in an evolving protoplanetary disk: effects on terrestrial planet composition. Astrophys. J. 787, 81 (2014). doi:10.1088/0004-637X/787/1/81, 1405.3253

    Google Scholar 

  • Mullally, F., Kilic, M., Reach, W.T., Kuchner, M.J., von Hippel, T., Burrows, A., Winget, D.E.: A Spitzer white dwarf infrared survey. Astrophys. J. Suppl. Ser. 171, 206–218 (2007). doi:10.1086/511858, astro-ph/0611588

    Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Mustill, A.J., Villaver, E.: Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs. Astrophys. J. 761, 121 (2012). doi:10.1088/0004-637X/761/2/121, 1210.0328

    Google Scholar 

  • Mustill, A.J., Veras, D., Villaver, E.: Long-term evolution of three-planet systems to the post-main sequence and beyond. Mon. Not. R. Astron. Soc. 437, 1404–1419 (2014). doi:10.1093/mnras/stt1973, 1310.3168

    Google Scholar 

  • O’Neill, H.S.C., Palme, H.: Collisional erosion and the non-chondritic composition of the terrestrial planets. Philos. Trans. R. Soc. Lond. A 366, 4205–4238 (2008). doi:10.1098/rsta.2008.0111

    Article  ADS  Google Scholar 

  • Payne, M.J., Veras, D., Holman, M.J., Gänsicke, B.T.: Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016). doi:10.1093/mnras/stv2966, 1603.09344

    Google Scholar 

  • Qi, C., Öberg, K.I., Wilner, D.J., D’Alessio, P., Bergin, E., Andrews, S.M., Blake, G.A., Hogerheijde, M.R., van Dishoeck, E.F.: Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013). doi:10.1126/science.1239560, 1307.7439

    Google Scholar 

  • Raddi, R., Gänsicke, B.T., Koester, D., Farihi, J., Hermes, J.J., Scaringi, S., Breedt, E., Girven, J.: Likely detection of water-rich asteroid debris in a metal-polluted white dwarf. Mon. Not. R. Astron. Soc. 450, 2083–2093 (2015). doi:10.1093/mnras/stv701, 1503.07864

    Google Scholar 

  • Rafikov, R.R.: Metal accretion onto white dwarfs caused by Poynting-Robertson drag on their debris disks. Astrophys. J. Lett. 732, L3 (2011a). doi:10.1088/2041-8205/732/1/L3, 1102.3153

    Google Scholar 

  • Rafikov, R.R.: Runaway accretion of metals from compact discs of debris on to white dwarfs. Mon. Not. R. Astron. Soc. L287+ (2011b) doi:10.1111/j.1745-3933.2011.01096.x, 1102.4343

    Google Scholar 

  • Rafikov, R.R., Garmilla, J.A.: Inner edges of compact debris disks around metal-rich white dwarfs. Astrophys. J. 760, 123 (2012). doi:10.1088/0004-637X/760/2/123, 1207.7082

    Google Scholar 

  • Rappaport, S., Gary, B.L., Kaye, T., Vanderburg, A., Croll, B., Benni, P., Foote, J.: Drifting asteroid fragments around WD 1145+017. Mon. Not. R. Astron. Soc. 458, 3904–3917 (2012). doi:10.1093/mnras/stw612, 1602.00740

    Google Scholar 

  • Raymond, S.N., Barnes, R., Veras, D., Armitage, P.J., Gorelick, N., Greenberg, R.: Planet-planet scattering leads to tightly packed planetary systems. Astrophys. J. Lett. 696, L98–L101 (2009). doi:10.1088/0004-637X/696/1/L98, 0903.4700

    Google Scholar 

  • Raymond, S.N., Armitage, P.J., Gorelick, N.: Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010). doi:10.1088/0004-637X/711/2/772, 1001.3409

    Google Scholar 

  • Reach, W.T., Kuchner, M.J., von Hippel, T., Burrows, A., Mullally, F., Kilic, M., Winget, D.E.: The dust cloud around the white dwarf G29-38. Astrophys. J. Lett. 635, L161–L164 (2005). doi:10.1086/499561, astro-ph/0511358

    Google Scholar 

  • Reach, W.T., Lisse, C., von Hippel, T., Mullally, F.: The dust cloud around the white dwarf G 29-38. II. Spectrum from 5 to 40 μm and mid-infrared photometric variability. Astrophys. J. 693, 697–712 (2009). doi:10.1088/0004-637X/693/1/697, 0810.3276

    Google Scholar 

  • Redfield, S., Farihi, J., Cauley, P.W., Parsons, S.G., Gaensicke, B.T., Duvvuri, G.: Spectroscopic evolution of disintegrating planetesimals: minutes to months variability in the circumstellar gas associated with WD 1145+017 (2016). ArXiv e-prints 1608.00549

    Google Scholar 

  • Sion, E.M., Holberg, J.B., Oswalt, T.D., McCook, G.P., Wasatonic, R.: The white dwarfs within 20 parsecs of the sun: kinematics and statistics. Astron. J. 138, 1681–1689 (2009). doi:10.1088/0004-6256/138/6/1681, 0910.1288

    Google Scholar 

  • Su, K.Y.L., Rieke, G.H., Stansberry, J.A., Bryden, G., Stapelfeldt, K.R., Trilling, D.E., Muzerolle, J., Beichman, C.A., Moro-Martin, A., Hines, D.C., Werner, M.W.: Debris disk evolution around A stars. Astrophys. J. 653, 675–689 (2006). doi:10.1086/508649, astro-ph/0608563

    Google Scholar 

  • Telesco, C.M., Joy, M., Sisk, C.: Observations of G29 - 38 at 10 microns. Astrophys. J. Lett. 358, L17–L19 (1990). doi:10.1086/185769

    Google Scholar 

  • Tokunaga, A.T., Hodapp, K.W., Becklin, E.E., Cruikshank, D.P., Rigler, M., Toomey, D., Brown, R.H., Zuckerman, B.: Infrared spectroscopy, imaging, and 10 micron photometry of Giclas 29-38. Astrophys. J. Lett. 332, L71–L74 (1988). doi:10.1086/185269

    Google Scholar 

  • Valencia, D., O’Connell, R.J., Sasselov, D.D.: Inevitability of plate tectonics on super-earths. Astrophys. J. Lett. 670, L45–L48 (2007). doi:10.1086/524012, 0710.0699

    Google Scholar 

  • Vanderburg, A., Johnson, J.A., Rappaport, S., Bieryla, A., Irwin, J., Lewis, J.A., Kipping, D., Brown, W.R., Dufour, P., Ciardi, D.R., Angus, R., Schaefer, L., Latham, D.W., Charbonneau, D., Beichman, C., Eastman, J., McCrady, N., Wittenmyer, R.A., Wright, J.T.: A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015). doi:10.1038/nature15527, 1510.06387

    Google Scholar 

  • Veras, D., Wyatt, M.C.: The solar system’s post-main-sequence escape boundary. Mon. Not. R. Astron. Soc. 421, 2969–2981 (2012). doi:10.1111/j.1365-2966.2012.20522.x, 1201.2412

    Google Scholar 

  • Veras, D., Wyatt, M.C., Mustill, A.J., Bonsor, A., Eldridge, J.J.: The great escape: how exoplanets and smaller bodies desert dying stars. Mon. Not. R. Astron. Soc. 417, 2104–2123 (2011). doi:10.1111/j.1365-2966.2011.19393.x, 1107.1239

    Google Scholar 

  • Veras, D., Mustill, A.J., Bonsor, A., Wyatt, M.C.: Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. Mon. Not. R. Astron. Soc. 431, 1686–1708 (2013). doi:10.1093/mnras/stt289, 1302.3615

    Google Scholar 

  • Veras, D., Mustill, A.J., Gänsicke, B.T., Redfield, S., Georgakarakos. N., Bowler, A.B., Lloyd, M.J.S.: Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Mon. Not. R. Astron. Soc. 458, 3942–3967 (2016a). doi:10.1093/mnras/stw476, 1603.00025

    Google Scholar 

  • Veras, D., Marsh, T.R., Gänsicke, B.T.: Dynamical mass and multiplicity constraints on co-orbital bodies around stars. Mon. Not. R. Astron. Soc. 461(2), 1413–1420 (2016b). doi:10.1093/mnras/stw1324

    Article  ADS  Google Scholar 

  • Villaver, E., Livio, M.: Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007). doi:10.1086/516746, astro-ph/0702724

    Google Scholar 

  • Wetherill, G.W.: Formation of the earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990). doi:10.1146/annurev.ea.18.050190.001225

    Article  ADS  Google Scholar 

  • Wickramasinghe, N.C., Hoyle, F., Al-Mufti, S.: The infrared excess from the white dwarf star g29-38 - a brown dwarf or dust? Astrophys. Space Sci. 143, 193–197 (1988). doi:10.1007/BF00636767

    Google Scholar 

  • Wilson, D.J., Gänsicke, B.T., Koester, D., Toloza, O., Pala, A.F., Breedt, E., Parsons, S.G.: The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345). Mon. Not. R. Astron. Soc. 451, 3237–3248 (2015). doi:10.1093/mnras/stv1201, 1505.07466

    Google Scholar 

  • Wisdom, J.: The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. Astron. J. 85, 1122–1133 (1980). doi:10.1086/112778

    Article  ADS  Google Scholar 

  • Wolszczan, A., Frail, D.A.: A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992). doi:10.1038/355145a0

    Article  ADS  Google Scholar 

  • Wyatt, M.C.: Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008). doi:10.1146/annurev.astro.45.051806.110525

    Article  ADS  Google Scholar 

  • Wyatt, M.C., Smith, R., Su, K.Y.L., Rieke, G.H., Greaves, J.S., Beichman, C.A., Bryden, G.: Steady state evolution of debris disks around A stars. Astrophys. J. 663, 365–382 (2007). doi:10.1086/518404, astro-ph/0703608

    Google Scholar 

  • Wyatt, M.C., Farihi, J., Pringle, J.E., Bonsor, A.: Stochastic accretion of planetesimals on to white dwarfs: constraints on the mass distribution of accreted material from atmospheric pollution. Mon. Not. R. Astron. Soc. 439, 3371–3391 (2014). doi:10.1093/mnras/stu183, 1401.6173

    Google Scholar 

  • Xu, S., Jura, M.: Spitzer observations of white dwarfs: the missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012). doi:10.1088/0004-637X/745/1/88, 1109.4207

    Google Scholar 

  • Xu, S., Jura, M.: The drop during less than 300 days of a dusty white dwarf’s infrared luminosity. Astrophys. J. Lett. 792, L39 (2014). doi:10.1088/2041-8205/792/2/L39, 1408.1618

    Google Scholar 

  • Xu, S., Jura, M., Klein, B., Koester, D., Zuckerman, B.: Two beyond-primitive extrasolar planetesimals. Astrophys. J. 766, 132 (2013). doi:10.1088/0004-637X/766/2/132, 1302.4799

    Google Scholar 

  • Xu, S., Jura, M., Koester, D., Klein, B., Zuckerman, B.: Elemental compositions of two extrasolar rocky planetesimals. Astrophys. J. 783, 79 (2014). doi:10.1088/0004-637X/783/2/79, 1401.4252

    Google Scholar 

  • Xu, S., Jura, M., Dufour, P., Zuckerman, B.: Evidence for gas from a disintegrating extrasolar asteroid. Astrophys. J. Lett. 816, L22 (2016). doi:10.3847/2041-8205/816/2/L22, 1511.05973

    Google Scholar 

  • Zuckerman, B.: The occurrence of wide-orbit planets in binary star systems. Astrophys. J. Lett. 791, L27 (2014). doi:10.1088/2041-8205/791/2/L27, 1407.2666

    Google Scholar 

  • Zuckerman, B., Becklin, E.E.: Excess infrared radiation from a white dwarf - an orbiting brown dwarf? Nature 330, 138–140 (1987). doi:10.1038/330138a0

    Article  ADS  Google Scholar 

  • Zuckerman, B., Koester, D., Reid, I.N., Hünsch, M.: Metal lines in DA white dwarfs. Astrophys. J. 596, 477–495 (2003). doi:10.1086/377492

    Article  ADS  Google Scholar 

  • Zuckerman, B., Melis, C., Klein, B., Koester, D., Jura, M.: Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722, 725–736 (2010). doi:10.1088/0004-637X/722/1/725, 1007.2252

    Google Scholar 

Download references

Acknowledgements

We thank Bruce Gary and Saul Rappaport for updating Fig. 8.7 for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Bonsor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bonsor, A., Xu, S. (2017). White Dwarf Planetary Systems: Insights Regarding the Fate of Planetary Systems. In: Pessah, M., Gressel, O. (eds) Formation, Evolution, and Dynamics of Young Solar Systems. Astrophysics and Space Science Library, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-319-60609-5_8

Download citation

Publish with us

Policies and ethics