The ALMA Revolution: Gas and Dust in Transitional Disks

  • Nienke van der Marel
Part of the Astrophysics and Space Science Library book series (ASSL, volume 445)


The study of protoplanetary disks was for a long time based on indirect measurements of gas and dust, limiting our understanding of planet formation . The arrival of ALMA has revolutionized our view of the structure of these disks. The Early Science ALMA observations in the last few years have revealed rings, asymmetries, dust/gas segregation, gas dynamics, evidence for dust trapping and vortices, and many more exciting phenomena that have been predicted for decades in physical models of disks. In this chapter I review the most important ALMA discoveries and the next steps in planet formation studies.



The author would like to thank Jonathan Williams for useful comments on the manuscript. The author is supported by the Beatrice Watson Parrent Fellowship at the University of Hawaii.


  1. ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015). doi:10.1088/2041-8205/808/1/L3, 1503.02649Google Scholar
  2. Andrews, S.M., Williams, J.P.: A submillimeter view of circumstellar dust disks in ρ Ophiuchi. Astrophys. J. 671, 1800–1812 (2007). doi:10.1086/522885, 0708.4185Google Scholar
  3. Andrews, S.M., Wilner, D.J., Espaillat, C., Hughes, A.M., Dullemond, C.P., McClure, M.K., Qi, C., Brown, J.M.: Resolved images of large cavities in protoplanetary transition disks. Astrophys. J. 732, 42 (2011). doi:10.1088/0004-637X/732/1/42, 1103.0284Google Scholar
  4. Andrews, S.M., Wilner, D.J., Zhu, Z., Birnstiel, T., Carpenter, J.M., Pérez, L.M., Bai, X.N., Öberg, K.I., Hughes, A.M., Isella, A., Ricci, L.: Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. Astrophys. J. 820, L40 (2016). doi:10.3847/2041-8205/820/2/L40, 1603.09352Google Scholar
  5. Ansdell, M., Williams, J.P., van der Marel, N., Carpenter, J.M., Guidi, G., Hogerheijde, M., Mathews, G.S., Manara, C.F., Miotello, A., Natta, A., Oliveira, I., Tazzari, M., Testi, L., van Dishoeck, E.F., van Terwisga, S.E.: ALMA survey of lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016). doi:10.3847/0004-637X/828/1/46, 1604.05719Google Scholar
  6. Armitage, P.J.: Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195–236 (2011). doi:10.1146/annurev-astro-081710-102521, 1011.1496Google Scholar
  7. Ataiee, S., Pinilla, P., Zsom, A., Dullemond, C.P., Dominik, C., Ghanbari, J.: Asymmetric transition disks: vorticity or eccentricity? Astron. Astrophys. 553, L3 (2013). doi:10.1051/0004-6361/201321125, 1304.1736Google Scholar
  8. Avenhaus, H., Quanz, S.P., Schmid, H.M., Meyer, M.R., Garufi, A., Wolf, S., Dominik, C.: Structures in the protoplanetary disk of HD142527 seen in polarized scattered light. Astrophys. J. 781, 87 (2014). doi:10.1088/0004-637X/781/2/87, 1311.7088Google Scholar
  9. Banzatti, A., Pontoppidan, K.M.: An empirical sequence of disk gap opening revealed by rovibrational CO. Astrophys. J. 809, 167 (2015). doi:10.1088/0004-637X/809/2/167, 1507.06650Google Scholar
  10. Barenfeld, S.A., Carpenter, J.M., Ricci, L., Isella, A.: ALMA observations of circumstellar disks in the upper Scorpius OB Association. Astrophys. J. 827, 142 (2016). doi:10.3847/0004-637X/827/2/142, 1605.05772Google Scholar
  11. Barge, P., Sommeria, J.: Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys. 295, L1–L4 (1995). astro-ph/9501050Google Scholar
  12. Bast, J.E., Brown, J.M., Herczeg, G.J., van Dishoeck, E.F., Pontoppidan, K.M.: Single peaked CO emission line profiles from the inner regions of protoplanetary disks. Astron. Astrophys. 527, A119 (2011). doi:10.1051/0004-6361/201015225, 1101.1091Google Scholar
  13. Batalha, N.M.: Exploring exoplanet populations with NASA’s Kepler mission. Proc. Natl. Acad. Sci. 111, 12647–12654 (2014). doi:10.1073/pnas.1304196111, 1409.1904Google Scholar
  14. Beckwith, S.V.W., Sargent, A.I.: Circumstellar disks and the search for neighbouring planetary systems. Nature 383, 139–144 (1996). doi:10.1038/383139a0ADSCrossRefGoogle Scholar
  15. Birnstiel, T., Dullemond, C.P., Brauer, F.: Gas- and dust evolution in protoplanetary disks. Astron. Astrophys. 513, A79 (2010). doi:10.1051/0004-6361/200913731, 1002.0335Google Scholar
  16. Birnstiel, T., Andrews, S.M., Ercolano, B.: Can grain growth explain transition disks? Astron. Astrophys. 544, A79 (2012). doi:10.1051/0004-6361/201219262, 1206.5802Google Scholar
  17. Birnstiel, T., Dullemond, C.P., Pinilla, P.: Lopsided dust rings in transition disks. Astron. Astrophys. 550, L8 (2013). doi:10.1051/0004-6361/201220847, 1301.1976Google Scholar
  18. Brauer, F., Dullemond, C.P., Henning, T.: Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astron. Astrophys. 480, 859–877 (2008). doi:10.1051/0004-6361:20077759, 0711.2192Google Scholar
  19. Brown, J.M., Blake, G.A., Qi, C., Dullemond, C.P., Wilner, D.J., Williams, J.P.: Evidence for dust clearing through resolved submillimeter imaging. Astrophys. J. 704, 496–502 (2009). doi:10.1088/0004-637X/704/1/496ADSCrossRefGoogle Scholar
  20. Brown, J.M., Herczeg, G.J., Pontoppidan, K.M., van Dishoeck, E.F.: A 30 AU radius CO gas hole in the disk around the Herbig Ae Star Oph IRS 48. Astrophys. J. 744, 116 (2012). doi:10.1088/0004-637X/744/2/116, 1110.2095Google Scholar
  21. Brown, J.M., Pontoppidan, K.M., van Dishoeck, E.F., Herczeg, G.J., Blake, G.A., Smette, A.: VLT-CRIRES survey of rovibrational CO emission from protoplanetary disks. Astrophys. J. 770:94 (2013). doi:10.1088/0004-637X/770/2/94, 1304.4961Google Scholar
  22. Bruderer, S.: Survival of molecular gas in cavities of transition disks. I. CO. Astron. Astrophys. 559, A46 (2013). doi:10.1051/0004-6361/201321171, 1308.2966Google Scholar
  23. Bruderer, S., van Dishoeck, E.F., Doty, S.D., Herczeg, G.J.: The warm gas atmosphere of the HD 100546 disk seen by Herschel. Evidence of a gas-rich, carbon-poor atmosphere? Astron. Astrophys. 541, A91 (2012). doi:10.1051/0004-6361/201118218, 1201.4860Google Scholar
  24. Bruderer, S., van der Marel, N., van Dishoeck, E.F., van Kempen, T.A.: Gas structure inside dust cavities of transition disks: Ophiuchus IRS 48 observed by ALMA. Astron. Astrophys. 562, A26 (2014). doi:10.1051/0004-6361/201322857, 1312.2756Google Scholar
  25. Canovas, H., Caceres, C., Schreiber, M.R., Hardy, A., Cieza, L., Ménard, F., Hales, A.: A ring-like concentration of mm-sized particles in Sz 91. Mon. Not. R. Astron. Soc. 458, L29–L33 (2016). doi:10.1093/mnrasl/slw006, 1601.06801Google Scholar
  26. Canovas, H., Schreiber, M.R., Cáceres, C., et al.: Astrophys. J. 805, 21 (2015)ADSCrossRefGoogle Scholar
  27. Carmona, A., Pinte, C., Thi, W.F., Benisty, M., Ménard, F., Grady, C., Kamp, I., Woitke, P., Olofsson, J., Roberge, A., Brittain, S., Duchêne, G., Meeus, G., Martin-Zaïdi, C., Dent, B., Le Bouquin, J.B., Berger, J.P.: Constraining the structure of the transition disk HD 135344B (SAO 206462) by simultaneous modeling of multiwavelength gas and dust observations. Astron. Astrophys. 567, A51 (2014). doi:10.1051/0004-6361/201322534, 1403.6193Google Scholar
  28. Carmona, A., Thi, W.F., Kamp, I., et al.: Astron. Astrophys. 598, A118 (2017)CrossRefGoogle Scholar
  29. Carpenter, J.M., Ricci, L., Isella, A.: An ALMA continuum survey of circumstellar disks in the upper Scorpius OB Association. Astrophys. J. 787, 42 (2014). doi:10.1088/0004-637X/787/1/42, 1404.0387Google Scholar
  30. Casassus, S., van der Plas, G., M, S.P., Dent, W.R.F., Fomalont, E., Hagelberg, J., Hales, A., Jordán, A., Mawet, D., Ménard, F., Wootten, A., Wilner, D., Hughes, A.M., Schreiber, M.R., Girard, J.H., Ercolano, B., Canovas, H., Román, P.E., Salinas, V.: Flows of gas through a protoplanetary gap. Nature 493, 191–194 (2013). doi:10.1038/nature11769, 1305.6062Google Scholar
  31. Casassus, S., Marino, S., Pérez, S., Roman, P., Dunhill, A., Armitage, P.J., Cuadra, J., Wootten, A., van der Plas, G., Cieza, L., Moral, V., Christiaens, V., Montesinos, M.: Accretion kinematics through the warped transition disk in HD142527 from resolved CO(6-5) observations. Astrophys. J. 811, 92 (2015a). doi:10.1088/0004-637X/811/2/92, 1505.07732Google Scholar
  32. Casassus, S., Wright, C.M., Marino, S., Maddison, S.T., Wootten, A., Roman, P., Pérez, S., Pinilla, P., Wyatt, M., Moral, V., Ménard, F., Christiaens, V., Cieza, L., van der Plas, G.: (2015b) A compact concentration of large grains in the HD 142527 protoplanetary dust trap. Astrophys. J. 812, 126. doi:10.1088/0004-637X/812/2/126, 1505.07743Google Scholar
  33. Cieza, L.A., Schreiber, M.R., Romero, G.A., Mora, M.D., Merin, B., Swift, J.J., Orellana, M., Williams, J.P., Harvey, P.M., Evans, N.J. II The nature of transition circumstellar disks. I. The Ophiuchus molecular cloud. Astrophys. J. 712, 925-941 (2010). doi:10.1088/0004-637X/712/2/925, 1001.4825Google Scholar
  34. Cieza, L.A., Schreiber, M.R., Romero, G.A., Williams, J.P., Rebassa-Mansergas, A., Merín, B.: The nature of transition circumstellar disks. III. Perseus, Taurus, and Auriga. Astrophys. J. 750, 157 (2012). doi:10.1088/0004-637X/750/2/157, 1203.6849Google Scholar
  35. Currie, T., Cloutier, R., Brittain, S., Grady, C., Burrows, A., Muto, T., Kenyon, S.J., Kuchner, M.J.: Resolving the HD 100546 protoplanetary system with the Gemini Planet Imager: evidence for multiple forming, accreting planets. Astrophys. J. Lett. 814, L27 (2015). doi:10.1088/2041-8205/814/2/L27, 1511.02526Google Scholar
  36. Currie, T., Sicilia-Aguilar, A.: Astrophys. J. 732, 24 (2011)ADSCrossRefGoogle Scholar
  37. de Boer, J., Salter, G., Benisty, M., Vigan, A., Boccaletti, A., Pinilla, P., Ginski, C., Juhasz, A., Maire, A.L., Messina, S., Desidera, S., Cheetham, A., Girard, J.H., Wahhaj, Z., Langlois, M., Bonnefoy, M., Beuzit, J.L., Buenzli, E., Chauvin, G., Dominik, C., Feldt, M., Gratton, R., Hagelberg, J., Isella, A., Janson, M., Keller, C.U., Lagrange, A.M., Lannier, J., Menard, F., Mesa, D., Mouillet, D., Mugrauer, M., Peretti, S., Perrot, C., Sissa, E., Snik, F., Vogt, N., Zurlo, A., SPHERE Consortium: Multiple rings in the transition disk and companion candidates around RX J1615.3-3255. High contrast imaging with VLT/SPHERE. Astron. Astrophys. 595, A114 (2016). doi:10.1051/0004-6361/201629267, 1610.04038Google Scholar
  38. de Juan Ovelar, M., Min, M., Dominik, C., Thalmann, C., Pinilla, P., Benisty, M., Birnstiel, T.: Imaging diagnostics for transitional discs. Astron. Astrophys. 560, A111 (2013). doi:10.1051/0004-6361/201322218, 1309.1039Google Scholar
  39. de Juan Ovelar, M., Pinilla, P., Min, M., Dominik, C., Birnstiel, T.: Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA. Mon. Not. R. Astron. Soc. 459, L85–L89 (2016). doi:10.1093/mnrasl/slw051, 1603.09357Google Scholar
  40. de Val-Borro, M., Artymowicz, P., D’Angelo, G., Peplinski, A.: Vortex generation in protoplanetary disks with an embedded giant planet. Astron. Astrophys. 471, 1043–1055 (2007). doi:10.1051/0004-6361:20077169, 0706.3200Google Scholar
  41. Dong, R., Rafikov, R., Zhu, Z., Hartmann, L., Whitney, B., Brandt, T., Muto, T., Hashimoto, J., Grady, C., Follette, K., Kuzuhara, M., Tanii, R., Itoh, Y., Thalmann, C., Wisniewski, J., Mayama, S., Janson, M., Abe, L., Brandner, W., Carson, J., Egner, S., Feldt, M., Goto, M., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S., Henning, T., Hodapp, K.W., Honda, M., Inutsuka, S., Ishii, M., Iye, M., Kandori, R., Knapp, G.R., Kudo, T., Kusakabe, N., Matsuo, T., McElwain, M.W., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Suto, H., Suzuki, R., Takami, M., Takato, N., Terada, H., Tomono, D., Turner, E.L., Watanabe, M., Yamada, T., Takami, H., Usuda, T., Tamura, M.: The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a generic disk model. Astrophys. J. 750, 161 (2012). doi:10.1088/0004-637X/750/2/161, 1203.1612Google Scholar
  42. Dong, R., van der Marel, N., Hashimoto, J., Chiang, E., Akiyama, E., Liu, H.B., Muto, T., Knapp, G.R., Tsukagoshi, T., Brown, J., Bruderer, S., Koyamatsu, S., Kudo, T., Ohashi, N., Rich, E., Satoshi, M., Takami, M., Wisniewski, J., Yang, Y., Zhu, Z., Tamura, M.: The sizes and depletions of the dust and gas cavities in the transitional disk J160421.7-213028. Astrophys. J. 836, 201 (2017). doi:10.3847/1538-4357/aa5abf, 1701.05189Google Scholar
  43. Draine, B.T.: On the submillimeter opacity of protoplanetary disks. Astrophys. J. 636, 1114–1120 (2006). doi:10.1086/498130, astro-ph/0507292Google Scholar
  44. Espaillat, C., Ingleby, L., Hernández, J., Furlan, E., D’Alessio, P., Calvet, N., Andrews, S., Muzerolle, J., Qi, C., Wilner, D.: On the transitional disk class: linking observations of T Tauri stars and physical disk models. Astrophys. J. 747, 103 (2012). doi:10.1088/0004-637X/747/2/103, 1201.1518Google Scholar
  45. Espaillat, C., Muzerolle, J., Najita, J., et al.: Protostars and Planets VI, p. 497 (2014)Google Scholar
  46. Fukagawa, M., Tsukagoshi, T., Momose, M., Saigo, K., Ohashi, N., Kitamura, Y., Inutsuka, Si., Muto, T., Nomura, H., Takeuchi, T., Kobayashi, H., Hanawa, T., Akiyama, E., Honda, M., Fujiwara, H., Kataoka, A., Takahashi, S.Z., Shibai, H.: Local enhancement of the surface density in the protoplanetary ring surrounding HD 142527. Publ. Astron. Soc. Jpn. 65, L14 (2013). doi:10.1093/pasj/65.6.L14, 1309.7400Google Scholar
  47. Fung, J., Shi, J.M., Chiang, E.: How empty are disk gaps opened by giant planets? Astrophys. J. 782, 88 (2014). doi:10.1088/0004-637X/782/2/88, 1310.0156Google Scholar
  48. Garufi, A., Quanz, S.P., Avenhaus, H., Buenzli, E., Dominik, C., Meru, F., Meyer, M.R., Pinilla, P., Schmid, H.M., Wolf, S.: Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet? SAO 206462 (HD 135344B) in polarized light with VLT/NACO. Astron. Astrophys. 560, A105 (2013). doi:10.1051/0004-6361/201322429, 1311.4195Google Scholar
  49. Geers, V.C., Pontoppidan, K.M., van Dishoeck, E.F., Dullemond, C.P., Augereau, J.C., Merín, B., Oliveira, I., Pel, J.W.: Spatial separation of small and large grains in the transitional disk around the young star ¡ASTROBJ¿IRS 48¡/ASTROBJ¿. Astron. Astrophys. 469, L35–L38 (2007). doi:10.1051/0004-6361:20077524, 0705.2969Google Scholar
  50. Ginski, C., Stolker, T., Pinilla, P., Dominik, C., Boccaletti, A., de Boer, J., Benisty, M., Biller, B., Feldt, M., Garufi, A., Keller, C.U., Kenworthy, M., Maire, A.L., Ménard, F., Mesa, D., Milli, J., Min, M., Pinte, C., Quanz, S.P., van Boekel, R., Bonnefoy, M., Chauvin, G., Desidera, S., Gratton, R., Girard, J.H.V., Keppler, M., Kopytova, T., Lagrange, A.M., Langlois, M., Rouan, D., Vigan, A.: Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 595, A112 (2016). doi:10.1051/0004-6361/201629265, 1609.04027Google Scholar
  51. Huélamo, N., Lacour, S., Tuthill, P., Ireland, M., Kraus, A., Chauvin, G.: A companion candidate in the gap of the T Chamaeleontis transitional disk. Astron. Astrophys. 528, L7 (2011). doi:10.1051/0004-6361/201016395, 1102.4982Google Scholar
  52. Isella, A., Carpenter, J.M., Sargent, A.I.: Investigating planet formation in circumstellar disks: CARMA observations of Ry Tau and Dg Tau. Astrophys. J. 714, 1746–1761 (2010a). doi:10.1088/0004-637X/714/2/1746, 1003.4318Google Scholar
  53. Isella, A., Guidi, G., Testi, L., et al.: Phys. Rev. Lett. 117, 251101 (2016)ADSCrossRefGoogle Scholar
  54. Isella, A., Natta, A., Wilner, D., Carpenter, J.M., Testi, L.: Millimeter imaging of MWC 758: probing the disk structure and kinematics. Astrophys. J. 725, 1735–1741 (2010b). doi:10.1088/0004-637X/725/2/1735, 1010.3016Google Scholar
  55. Jonkheid, B., Kamp, I., Augereau, J.C., van Dishoeck, E.F.: Modeling the gas-phase chemistry of the transitional disk around HD 141569A. Astron. Astrophys. 453, 163–171 (2006). doi:10.1051/0004-6361:20054769, astro-ph/0603515Google Scholar
  56. Klahr, H.H., Henning, T.: Particle-trapping eddies in protoplanetary accretion disks. Icarus 128, 213–229 (1997). doi:10.1006/icar.1997.5720ADSCrossRefGoogle Scholar
  57. Koerner, D.W., Sargent, A.I., Beckwith, S.V.W.: A rotating gaseous disk around the T Tauri star GM Aurigae. Icarus 106, 2 (1993). doi:10.1006/icar.1993.1154ADSCrossRefGoogle Scholar
  58. Kraus, A.L., Ireland, M.J.: Astrophys. J. 745, 5 (2012)ADSCrossRefGoogle Scholar
  59. Lahuis, F., van Dishoeck, E.F., Blake, G.A., Evans, N.J. II, Kessler-Silacci, J.E., Pontoppidan, K.M.: c2d Spitzer IRS spectra of disks around T Tauri stars. III. [Ne II], [Fe I], and H2 gas-phase lines. Astrophys. J. 665, 492–511 (2007). doi:10.1086/518931, 0704.2305Google Scholar
  60. Lyra, W., Johansen, A., Klahr, H., Piskunov, N.: Standing on the shoulders of giants. Trojan earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. Astron. Astrophys. 493, 1125–1139 (2009). doi:10.1051/0004-6361:200810797, 0810.3192Google Scholar
  61. Lyra, W., Lin, M.-K.: Astrophys. J. 775, 17 (2013)ADSCrossRefGoogle Scholar
  62. Marino, S., Perez, S., Casassus, S.: Shadows cast by a warp in the HD 142527 protoplanetary disk. Astrophys. J. Lett. 798, L44 (2015) doi:10.1088/2041-8205/798/2/L44, 1412.4632Google Scholar
  63. Najita, J.R., Strom, S.E., Muzerolle, J.: Demographics of transition objects. Mon. Not. R. Astron. Soc. 378, 369–378 (2007). doi:10.1111/j.1365-2966.2007.11793.x, 0704.1681Google Scholar
  64. Olofsson, J., Szűcs, L., Henning, T., Linz, H., Pascucci, I., Joergens, V.: The Herschel/PACS view of disks around low-mass stars in Chamaleon-I. Astron. Astrophys. 560, A100 (2013). doi:10.1051/0004-6361/201321967, 1310.0834Google Scholar
  65. Owen, J.E.: The origin and evolution of transition discs: successes, problems, and open questions. Publ. Astron. Soc. Aust. 33, e005 (2016). doi:10.1017/pasa.2016.2, 1512.06873Google Scholar
  66. Owen, J.E., Clarke, C.J.: Two populations of transition discs? Mon. Not. R. Astron. Soc. 426, L96–L100 (2012). doi:10.1111/j.1745-3933.2012.01334.x, 1205.5564Google Scholar
  67. Pascucci, I., Hollenbach, D., Najita, J., Muzerolle, J., Gorti, U., Herczeg, G.J., Hillenbrand, L.A., Kim, J.S., Carpenter, J.M., Meyer, M.R., Mamajek, E.E., Bouwman, J.: Detection of [Ne II] emission from Young circumstellar disks. Astrophys. J. 663, 383–393 (2007). doi:10.1086/518535, astro-ph/0703616Google Scholar
  68. Pascucci, I., Testi, L., Herczeg, G.J., Long, F., Manara, C.F., Hendler, N., Mulders, G.D., Krijt, S., Ciesla, F., Henning, T., Mohanty, S., Drabek-Maunder, E., Apai, D., Szűcs, L., Sacco, G., Olofsson, J.: A steeper than linear disk mass-stellar mass scaling relation. Astrophys. J. 831, 125 (2016). doi:10.3847/0004-637X/831/2/125, 1608.03621Google Scholar
  69. Pérez, L.M., Isella, A., Carpenter, J.M., Chandler, C.J.: Large-scale asymmetries in the transitional disks of SAO 206462 and SR 21. Astrophys. J. Lett. 783, L13 (2014). doi:10.1088/2041-8205/783/1/L13, 1402.0832Google Scholar
  70. Perez, S., Casassus, S., Ménard, F., Roman, P., van der Plas, G., Cieza, L., Pinte, C., Christiaens, V., Hales, A.S.: CO gas inside the protoplanetary disk cavity in HD 142527: disk structure from ALMA. Astrophys. J. 798, 85 (2015). doi:10.1088/0004-637X/798/2/85, 1410.8168Google Scholar
  71. Pinilla, P., Benisty, M., Birnstiel, T.: Ring shaped dust accumulation in transition disks. Astron. Astrophys. 545, A81 (2012). doi:10.1051/0004-6361/201219315, 1207.6485Google Scholar
  72. Pinilla, P., de Boer, J., Benisty, M., Juhász, A., de Juan Ovelar, M., Dominik, C., Avenhaus, H., Birnstiel, T., Girard, J.H., Huelamo, N., Isella, A., Milli, J.: Variability and dust filtration in the transition disk J160421.7-213028 observed in optical scattered light. Astron. Astrophys. 584, L4 (2015a). doi:10.1051/0004-6361/201526981, 1510.00412Google Scholar
  73. Pinilla, P., van der Marel, N., Pérez, L.M., van Dishoeck, E.F., Andrews, S., Birnstiel, T., Herczeg, G., Pontoppidan, K.M., van Kempen, T.: Testing particle trapping in transition disks with ALMA. Astron. Astrophys. 584, A16 (2015b). doi:10.1051/0004-6361/201526655, 1509.03040Google Scholar
  74. Pinilla, P., Klarmann, L., Birnstiel, T., Benisty, M., Dominik, C., Dullemond, C.P.: A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap. Astron. Astrophys. 585, A35 (2016). doi:10.1051/0004-6361/201527131, 1511.04105Google Scholar
  75. Pinilla, P., Pérez, L.M., Andrews, S., et al.: Astrophys. J. 839, 99 (2017)ADSCrossRefGoogle Scholar
  76. Pontoppidan, K.M., Blake, G.A., van Dishoeck, E.F., Smette, A., Ireland, M.J., Brown, J.: Spectroastrometric imaging of molecular gas within protoplanetary disk gaps. Astrophys. J. 684, 1323–1329 (2008). doi:10.1086/590400, 0805.3314Google Scholar
  77. Regály, Z., Juhász, A., Sándor, Z., Dullemond, C.P.: Possible planet-forming regions on submillimetre images. Mon. Not. R. Astron. Soc. 419:1701–1712 (2012). doi:10.1111/j.1365-2966.2011.19834.x, 1109.6177Google Scholar
  78. Ricci, L., Testi, L., Natta, A., Neri, R., Cabrit, S., Herczeg, G.J.: Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. Astron. Astrophys. 512, A15 (2010). doi:10.1051/0004-6361/200913403, 0912.3356Google Scholar
  79. Rice, W.K.M., Armitage, P.J., Wood, K., Lodato, G.: Dust filtration at gap edges: implications for the spectral energy distributions of discs with embedded planets. Mon. Not. R. Astron. Soc. 373, 1619–1626 (2006). doi:10.1111/j.1365-2966.2006.11113.x, astro-ph/0609808Google Scholar
  80. Romero, G.A., Schreiber, M.R., Cieza, L.A., Rebassa-Mansergas, A., Merín, B., Smith Castelli, A.V., Allen, L.E., Morrell, N.: The nature of transition circumstellar disks. II. Southern molecular clouds. Astrophys. J. 749, 79 (2012). doi:10.1088/0004-637X/749/1/79, 1203.6816Google Scholar
  81. Rosenfeld, K.A., Chiang, E., Andrews, S.M.: Fast radial flows in transition disk holes. Astrophys. J. 782, 62 (2014). doi:10.1088/0004-637X/782/2/62, 1312.3817Google Scholar
  82. Sallum, S., Follette, K.B., Eisner, J.A., Close, L.M., Hinz, P., Kratter, K., Males, J., Skemer, A., Macintosh, B., Tuthill, P., Bailey, V., Defrère, D., Morzinski, K., Rodigas, T., Spalding, E., Vaz, A., Weinberger, A.J.: Accreting protoplanets in the LkCa 15 transition disk. Nature 527, 342–344 (2015). doi:10.1038/nature15761, 1511.07456Google Scholar
  83. Sargent, A.I., Beckwith, S.: Kinematics of the circumstellar gas of HL Tauri and R Monocerotis. Astrophys. J. 323, 294–305 (1987). doi:10.1086/165827ADSCrossRefGoogle Scholar
  84. Stolker, T., Dominik, C., Avenhaus, H., et al.: Astron. Astrophys. 595, A113 (2016)CrossRefGoogle Scholar
  85. Strom, K.M., Strom, S.E., Edwards, S., Cabrit, S., Skrutskie, M.F.: Circumstellar material associated with solar-type pre-main-sequence stars - a possible constraint on the timescale for planet building. Astron. J. 97, 1451–1470 (1989). doi:10.1086/115085ADSCrossRefGoogle Scholar
  86. Testi, L., Birnstiel, T., Ricci, L., et al.: Protostars and Planets VI, p. 339 (2014)Google Scholar
  87. Thalmann, C., Janson, M., Garufi, A., Boccaletti, A., Quanz, S.P., Sissa, E., Gratton, R., Salter, G., Benisty, M., Bonnefoy, M., Chauvin, G., Daemgen, S., Desidera, S., Dominik, C., Engler, N., Feldt, M., Henning, T., Lagrange, A.M., Langlois, M., Lannier, J., Le Coroller, H., Ligi, R., Ménard, F., Mesa, D., Meyer, M.R., Mulders, G.D., Olofsson, J., Pinte, C., Schmid, H.M., Vigan, A., Zurlo, A.: Resolving the planet-hosting inner regions of the LkCa 15 disk. Astrophys. J. Lett. 828, L17 (2016). doi:10.3847/2041-8205/828/2/L17, 1608.08642Google Scholar
  88. Tsukagoshi, T., Nomura, H., Muto, T., Kawabe, R., Ishimoto, D., Kanagawa, K.D., Okuzumi, S., Ida, S., Walsh, C., Millar, T.J.: A gap with a deficit of large grains in the protoplanetary disk around TW Hya. Astrophys. J. Lett. 829, L35 (2016). doi:10.3847/2041-8205/829/2/L35, 1605.00289Google Scholar
  89. van der Marel, N.: Mind the gap: gas and dust in planet-forming disks. PhD thesis, Leiden University (2015)Google Scholar
  90. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C.P., van Kempen, T.A., Schmalzl, M., Brown, J.M., Herczeg, G.J., Mathews, G.S., Geers, V.: A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013). doi:10.1126/science.1236770, 1306.1768Google Scholar
  91. van der Marel, N., van Dishoeck, E.F., Bruderer, S., van Kempen, T.A.: Warm formaldehyde in the Ophiuchus IRS 48 transitional disk. Astron. Astrophys. 563, A113 (2014). doi:10.1051/0004-6361/201322960, 1402.0392Google Scholar
  92. van der Marel, N., Pinilla, P., Tobin, J., van Kempen, T., Andrews, S., Ricci, L., Birnstiel, T.: A concentration of centimeter-sized grains in the Ophiuchus IRS 48 dust trap. Astrophys. J. Lett. 810, L7 (2015a). doi:10.1088/2041-8205/810/1/L7, 1508.01003Google Scholar
  93. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Pérez, L., Isella, A.: Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. Astron. Astrophys. 579, A106 (2015b). doi:10.1051/0004-6361/201525658, 1504.03927Google Scholar
  94. van der Marel, N., Cazzoletti, P., Pinilla, P., Garufi, A.: Vortices and spirals in the HD135344B transition disk. Astrophys. J. 832, 178 (2016a). doi:10.3847/0004-637X/832/2/178, 1607.05775Google Scholar
  95. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Andrews, S.M., Pontoppidan, K.M., Herczeg, G.J., van Kempen, T., Miotello, A.: Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astron. Astrophys. 585, A58 (2016b). doi:10.1051/0004-6361/201526988, 1511.07149Google Scholar
  96. van der Marel, N., Verhaar, B.W., van Terwisga, S., Merín, B., Herczeg, G., Ligterink, N.F.W., van Dishoeck, E.F.: The (w)hole survey: an unbiased sample study of transition disk candidates based on Spitzer catalogs. Astron. Astrophys. 592, A126 (2016c). doi:10.1051/0004-6361/201628075, 1603.07255Google Scholar
  97. van der Plas, G., Wright, C.M., Ménard, F., et al.: Astron. Astrophys. 597, A32 (2017)CrossRefGoogle Scholar
  98. van Zadelhoff, G.J., van Dishoeck, E.F., Thi, W.F., Blake, G.A.: Submillimeter lines from circumstellar disks around pre-main sequence stars. Astron. Astrophys. 377, 566–580 (2001). doi:10.1051/0004-6361:20011137, astro-ph/0108375Google Scholar
  99. Varnière, P., Tagger, M.: Reviving dead zones in accretion disks by Rossby vortices at their boundaries. Astron. Astrophys. 446, L13–L16 (2006). doi:10.1051/0004-6361:200500226, astro-ph/0511684Google Scholar
  100. Walsh, C., Juhász, A., Pinilla, P., Harsono, D., Mathews, G.S., Dent, W.R.F., Hogerheijde, M.R., Birnstiel, T., Meeus, G., Nomura, H., Aikawa, Y., Millar, T.J., Sandell, G.: ALMA hints at the presence of two companions in the disk around HD 100546. Astrophys. J. Lett. 791, L6 (2014). doi:10.1088/2041-8205/791/1/L6, 1405.6542Google Scholar
  101. Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). doi:10.1146/annurev-astro-081710-102548, 1103.0556Google Scholar
  102. Woitke, P., Kamp, I., Thi, W.F.: Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim. Astron. Astrophys. 501, 383–406 (2009). doi:10.1051/0004-6361/200911821, 0904.0334Google Scholar
  103. Woitke, P., Min, M., Pinte, C., Thi, W.F., Kamp, I., Rab, C., Anthonioz, F., Antonellini, S., Baldovin-Saavedra, C., Carmona, A., Dominik, C., Dionatos, O., Greaves, J., Güdel, M., Ilee, J.D., Liebhart, A., Ménard, F., Rigon, L., Waters, L.B.F.M., Aresu, G., Meijerink, R., Spaans, M.: Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs. Astron. Astrophys. 586, A103 (2016). doi:10.1051/0004-6361/201526538, 1511.03431Google Scholar
  104. Zhang, K., Blake, G.A., Bergin, E.A.: Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015). doi:10.1088/2041-8205/806/1/L7, 1505.00882Google Scholar
  105. Zhang, K., Isella, A., Carpenter, J.M., Blake, G.A., et al.: Astrophys. J. 791, 42 (2014)ADSCrossRefGoogle Scholar
  106. Zhu, Z., Nelson, R.P., Hartmann, L., Espaillat, C., Calvet, N.: Transitional and pre-transitional disks: gap opening by multiple planets? Astrophys. J. 729, 47 (2011). doi:10.1088/0004-637X/729/1/47, 1012.4395Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for AstronomyUniversity of HawaiiHonoluluUSA

Personalised recommendations