Advertisement

Constraints from Planets in Binaries

  • Kaitlin M. Kratter
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 445)

Abstract

In this chapter I will discuss how planets place powerful constraints on the formation and early evolution of binary star systems. In addition, these systems demonstrate extreme modes of planet formation that can inform models of our own Solar System. I begin with a very brief overview of the theoretical mechanisms for forming binaries and their planets. I will present as case studies two triple-star systems comprising at least one planet orbiting one of the stars. Combining the information from these studies reveals that (1) many binaries with periods of 10–100 s of days form in their current orbital configurations as part of the star formation process (2) the frequency of tertiary companions in close binary systems may be indicative of three body instabilities other than the Kozai-Lidov mechanism (3) planet formation can proceed in highly perturbed, truncated disks, (4) a reservoir of material beyond the ice line may not be required to instigate planet formation.

Notes

Acknowledgements

KMK is supported by the National Science Foundation under Grant No. AST-1410174.

References

  1. Adams, F.C., Ruden, S.P., Shu, F.H.: Eccentric gravitational instabilities in nearly Keplerian disks. Astrophys. J. 347, 959–976 (1989). doi:10.1086/168187ADSCrossRefGoogle Scholar
  2. Akeson, R.L., Jensen, E.L.N.: Circumstellar disks around binary stars in Taurus. Astrophys. J. 784, 62 (2014). doi:10.1088/0004-637X/784/1/62, 1402.5363Google Scholar
  3. Anderson, K.R., Storch, N.I., Lai, D.: Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov-Kozai oscillations in stellar binaries. Mon. Not. R. Astron. Soc. 456, 3671–3701 (2016). doi:10.1093/mnras/stv2906, 1510.08918Google Scholar
  4. Armitage, P.J.: Dynamics of protoplanetary disks. Annu. Rev. Astron. Astrophys. 49, 195–236 (2011). doi:10.1146/annurev-astro-081710-102521, 1011.1496Google Scholar
  5. Armitage, P.J., Bonnell, I.A.: The brown dwarf desert as a consequence of orbital migration. Mon. Not. R. Astron. Soc. 330, L11–L14 (2002). doi:10.1046/j.1365-8711.2002.05213.x, astro-ph/0112001Google Scholar
  6. Artymowicz, P., Lubow, S.H.: Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994). doi:10.1086/173679Google Scholar
  7. Bate, M.R.: Predicting the properties of binary stellar systems: the evolution of accreting protobinary systems. Mon. Not. R. Astron. Soc. 314, 33–53 (2000). doi:10.1046/j.1365-8711.2000.03333.x, astro-ph/0002143Google Scholar
  8. Bate, M.R.: Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation. Mon. Not. R. Astron. Soc. 419, 3115–3146 (2012). doi:10.1111/j.1365-2966.2011.19955.x, 1110.1092Google Scholar
  9. Batygin, K.: A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491, 418–420 (2012). doi:10.1038/nature11560ADSCrossRefGoogle Scholar
  10. Batygin, K., Morbidelli, A., Tsiganis, K.: Formation and evolution of planetary systems in presence of highly inclined stellar perturbers. Astron. Astrophys. 533, A7 (2011). doi:10.1051/0004-6361/201117193, 1106.4051Google Scholar
  11. Bonnell, I.A., Bate, M.R.: The formation of close binary systems. Mon. Not. R. Astron. Soc. 271 999–1004 (1994). doi:10.1093/mnras/271.4.999, astro-ph/9411081Google Scholar
  12. Chambers, J.E., Wetherill, G.W., Boss, A.P.: The stability of multi-planet systems. Icarus 119, 261–268 (1996). doi:10.1006/icar.1996.0019ADSCrossRefGoogle Scholar
  13. Chatterjee, S., Tan, J.C.: Vulcan planets: inside-out formation of the innermost super-Earths. Astrophys. J. Lett. 798, L32 (2015). doi:10.1088/2041-8205/798/2/L32, 1411.2629Google Scholar
  14. Chen, X., Arce, H.G., Zhang, Q., Bourke, T.L., Launhardt, R., Jørgensen, J.K., Lee, C.F., Foster, J.B., Dunham, M.M., Pineda, J.E., Henning, T.: SMA observations of class 0 protostars: a high angular resolution survey of protostellar binary systems. Astrophys. J. 768, 110 (2013). doi:10.1088/0004-637X/768/2/110, 1304.0436Google Scholar
  15. Clarke, C.J., Pringle, J.E.: Star-disc interactions and binary star formation. Mon. Not. R. Astron. Soc. 249, 584–587 (1991). doi:10.1093/mnras/249.4.584ADSCrossRefGoogle Scholar
  16. Coughlin, J.L., Mullally, F., Thompson, S.E., Rowe, J.F., Burke, C.J., Latham, D.W., Batalha, N.M., Ofir, A., Quarles, B.L., Henze, C.E., Wolfgang, A., Caldwell, D.A., Bryson, S.T., Shporer, A., Catanzarite, J., Akeson, R., Barclay, T., Borucki, W.J., Boyajian, T.S., Campbell, J.R., Christiansen, J.L., Girouard, F.R., Haas, M.R., Howell, S.B., Huber, D., Jenkins, J.M., Li, J., Patil-Sabale, A., Quintana, E.V., Ramirez, S., Seader, S., Smith, J.C., Tenenbaum, P., Twicken, J.D., Zamudio, K.A.: Planetary candidates observed by Kepler. VII. The first fully uniform catalog based on the entire 48-month data set (Q1-Q17 DR24). Astrophys. J. Suppl. Ser. 224, 12 (2016). doi:10.3847/0067-0049/224/1/12, 1512.06149Google Scholar
  17. Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prčsa, A., Welsh, W.F., Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy, G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J., Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Borucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff, S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell, D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A., Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L., Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Cochran, W.D., Boss, A., Haas, M.R., Buzasi, D., Fischer, D.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011). doi:10.1126/science.1210923, 1109.3432Google Scholar
  18. Duchêne, G., Kraus, A.: Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013). doi:10.1146/annurev-astro-081710-102602, 1303.3028Google Scholar
  19. Dupuy, T.J., Kratter, K.M., Kraus, A.L., Isaacson, H., Mann, A.W., Ireland, M.J., Howard, A.W., Huber, D.: Orbital architectures of planet-hosting binaries. I. Forming five small planets in the truncated disk of Kepler-444A. Astrophys. J. 817, 80 (2016). doi:10.3847/0004-637X/817/1/80, 1512.03428Google Scholar
  20. Eggenberger, A.: Detection and characterization of planets in binary and multiple systems. In: Gożdziewski, K., Niedzielski, A., Schneider, J. (eds.). EAS Publ. Ser. 42, 19–37 (2010). doi:10.1051/eas/1042002, 0910.3332Google Scholar
  21. Eggleton, P., Kiseleva, L.: An empirical condition for stability of hierarchical triple systems. Astrophys. J. 455, 640 (1995). doi:10.1086/176611ADSCrossRefGoogle Scholar
  22. Fabrycky, D., Tremaine, S.: Shrinking binary and planetary orbits by kozai cycles with tidal friction. Astrophys. J. 669, 1298–1315 (2007). doi:10.1086/521702, 0705.4285Google Scholar
  23. Fisher, R.T.: A turbulent interstellar medium origin of the binary period distribution. Astrophys. J. 600, 769–780 (2004). doi:10.1086/380111, astro-ph/0303280Google Scholar
  24. Fragner, M.M., Nelson, R.P., Kley, W.: On the dynamics and collisional growth of planetesimals in misaligned binary systems. Astron. Astrophys. 528, A40 (2011). doi:10.1051/0004-6361/201015378, 1104.1460Google Scholar
  25. Fu, W., Lubow, S.H., Martin, R.G.: The kozai-lidov mechanism in hydrodynamical disks. III. Effects of disk mass and self-gravity. Astrophys. J. 813, 105 (2015). doi:10.1088/0004-637X/813/2/105, 1509.01280Google Scholar
  26. Fu, W., Lubow, S.H., Martin, R.G.: Fragmentation of Kozai-Lidov disks. Astrophys. J. Lett. 835, L29 (2017). doi:10.3847/2041-8213/835/2/L29, 1612.07673Google Scholar
  27. Gammie, C.F., Goodman, J., Ogilvie, G.I.: Linear and non-linear theory of a parametric instability of hydrodynamic warps in Keplerian discs. Mon. Not. R. Astron. Soc. 318, 1005–1016 (2000). doi:10.1046/j.1365-8711.2000.03669.x, astro-ph/0001539Google Scholar
  28. Goodman, A.A., Benson, P.J., Fuller, G.A., Myers, P.C.: Dense cores in dark clouds. VIII - velocity gradients. Astrophys. J. 406, 528–547 (1993). doi:10.1086/172465ADSCrossRefGoogle Scholar
  29. Hamers, A.S., Perets, H.B., Portegies Zwart, S.F.: A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. Mon. Not. R. Astron. Soc. 455, 3180–3200 (2016). doi:10.1093/mnras/stv2447, 1506.02039Google Scholar
  30. Harris, R.J., Andrews, S.M., Wilner, D.J., Kraus, A.L.: A resolved census of millimeter emission from Taurus multiple star systems. Astrophys. J. 751, 115 (2012). doi:10.1088/0004-637X/751/2/115, 1203.6353Google Scholar
  31. Hatzes, A.P., Cochran, W.D., Endl, M., McArthur, B., Paulson, D.B., Walker, G.A.H., Campbell, B., Yang, S.: A planetary companion to γ cephei A. Astrophys. J. 599, 1383–1394 (2003). doi:10.1086/379281, astro-ph/0305110Google Scholar
  32. Heppenheimer, T.A.: Outline of a theory of planet formation in binary systems. Icarus 22, 436–447 (1974). doi:10.1016/0019-1035(74)90076-1ADSCrossRefGoogle Scholar
  33. Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999). doi:10.1086/300695, astro-ph/9809315Google Scholar
  34. Innanen, K.A., Zheng, J.Q., Mikkola, S., Valtonen, M.J.: The kozai mechanism and the stability of planetary orbits in binary star systems. Astron. J. 113, 1915 (1997). doi:10.1086/118405ADSCrossRefGoogle Scholar
  35. Kiseleva, L.G., Eggleton, P.P., Mikkola, S.: Tidal friction in triple stars. Mon. Not. R. Astron. Soc. 300, 292–302 (1998). doi:10.1046/j.1365-8711.1998.01903.xADSCrossRefGoogle Scholar
  36. Kley, W., Haghighipour, N.: Modeling circumbinary planets: the case of Kepler-38. Astron. Astrophys. 564, A72 (2014). doi:10.1051/0004-6361/201323235, 1401.7648Google Scholar
  37. Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012). doi:10.1146/annurev-astro-081811-125523, 1203.1184Google Scholar
  38. Kocsis, B., Haiman, Z., Loeb, A.: Gas pile-up, gap overflow and Type 1.5 migration in circumbinary discs: application to supermassive black hole binaries. Mon. Not. R. Astron. Soc. 427, 2680–2700 (2012). doi:10.1111/j.1365-2966.2012.22118.x, 1205.5268Google Scholar
  39. Kostov, V.B., Orosz, J.A., Welsh, W.F., Doyle, L.R., Fabrycky, D.C., Haghighipour, N., Quarles, B., Short, D.R., Cochran, W.D., Endl, M., Ford, E.B., Gregorio, J., Hinse, T.C., Isaacson, H., Jenkins, J.M., Jensen, E.L.N., Kane, S., Kull, I., Latham, D.W., Lissauer, J.J., Marcy, G.W., Mazeh, T., Müller, T.W.A., Pepper, J., Quinn, S.N., Ragozzine, D., Shporer, A., Steffen, J.H., Torres, G., Windmiller, G., Borucki, W.J.: Kepler-1647b: the largest and longest-period kepler transiting circumbinary planet. Astrophys. J. 827, 86 (2016). doi:10.3847/0004-637X/827/1/86, 1512.00189Google Scholar
  40. Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962). doi:10.1086/108790ADSMathSciNetCrossRefGoogle Scholar
  41. Kratter, K.M.: The formation of close binaries. In: Schmidtobreick, L., Schreiber, M.R., Tappert, C. (eds.) Evolution of Compact Binaries, Astronomical Society of the Pacific Conference Series, vol. 447, p. 47 (2011). 1109.3740Google Scholar
  42. Kratter, K., Lodato, G.: Gravitational instabilities in circumstellar disks. Annu. Rev. Astron. Astrophys. 54, 271–311 (2016). doi:10.1146/annurev-astro-081915-023307, 1603.01280Google Scholar
  43. Kratter, K.M., Matzner, C.D.: Fragmentation of massive protostellar discs. Mon. Not. R. Astron. Soc., 373, 1563–1576 (2006). doi:10.1111/j.1365-2966.2006.11103.x, astro-ph/0609692Google Scholar
  44. Kratter, K.M., Shannon, A.: Planet packing in circumbinary systems. Mon. Not. R. Astron. Soc. 437, 3727–3735 (2014). doi:10.1093/mnras/stt2179, 1311.2942Google Scholar
  45. Kratter, K.M., Matzner, C.D., Krumholz, M.R.: Global models for the evolution of embedded, accreting protostellar disks. Astrophys. J. 681, 375–390 (2008). doi:10.1086/587543, 0709.4252Google Scholar
  46. Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010). doi:10.1088/0004-637X/708/2/1585, 0907.3476Google Scholar
  47. Kraus, A.L., Ireland, M.J., Huber, D., Mann, A.W., Dupuy, T.J.: The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016). doi:10.3847/0004-6256/152/1/8, 1604.05744Google Scholar
  48. Krumholz, M.R., Thompson, T.A.: Mass transfer in close, rapidly accreting protobinaries: an origin for massive twins? Astrophys. J. 661, 1034–1041 (2007). doi:10.1086/515566, astro-ph/0611822Google Scholar
  49. Krumholz, M.R., Klein, R.I., McKee, C.F.: Radiation-Hydrodynamic Simulations of Collapse and Fragmentation in Massive Protostellar Cores. Astrophys. J. 656, 959–979 (2007). doi:10.1086/510664, astro-ph/0609798Google Scholar
  50. Larwood, J.D., Nelson, R.P., Papaloizou, J.C.B., Terquem, C.: The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations. Mon. Not. R. Astron. Soc. 282, 597–613 (1996). doi:10.1093/mnras/282.2.597, astro-ph/9604013Google Scholar
  51. Li, Z.-Y., Banerjee, R., Pudritz, R.E., Jørgensen, J.K., Shang, H., Krasnopolsky, R., Maury, A.: The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows. In: Protostars and Planets VI, pp. 173–194. University of Arizona Press, Tucson, AZ (2014). doi:10.2458/azu_uapress_9780816531240-ch008, 1401.2219Google Scholar
  52. Li, G., Holman, M.J., Tao, M.: Uncovering circumbinary planetary architectural properties from selection biases. Astrophys. J. 831, 96 (2016). doi:10.3847/0004-637X/831/1/96, 1608.01768Google Scholar
  53. Lidov, M.L.: The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 9, 719–759 (1962). doi:10.1016/0032-0633(62)90129-0ADSCrossRefGoogle Scholar
  54. Lodato, G., Nayakshin, S., King, A.R., Pringle, J.E.: Black hole mergers: can gas discs solve the ‘final parsec’ problem? Mon. Not. R. Astron. Soc. 398, 1392–1402 (2009). doi:10.1111/j.1365-2966.2009.15179.x, 0906.0737Google Scholar
  55. Lubow, S., Artymowicz, P.: Young binary star/disk interactions. In: AAS/Division of Dynamical Astronomy Meeting #27, Bulletin of the American Astronomical Society, vol. 28, p. 1182 (1996)Google Scholar
  56. Lubow, S.H., Martin, R.G.: The evolution of planet-disk systems that are mildly inclined to the orbit of a binary companion. Astrophys. J. 817, 30 (2016). doi:10.3847/0004-637X/817/1/30, 1512.02141Google Scholar
  57. Lubow, S.H., Ogilvie, G.I.: On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000). doi:10.1086/309101, astro-ph/0003028 Google Scholar
  58. Lubow, S.H., Martin, R.G., Nixon, C.: Tidal torques on misaligned disks in binary systems. Astrophys. J. 800, 96 (2015). doi:10.1088/0004-637X/800/2/96, 1412.7741Google Scholar
  59. Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010). doi:10.1038/nature09684, 1011.4918Google Scholar
  60. Martin, R.G., Armitage, P.J., Alexander, R.D.: Formation of circumbinary planets in a dead zone. Astrophys. J. 773, 74 (2013). doi:10.1088/0004-637X/773/1/74, 1306.5241Google Scholar
  61. Martin, R.G., Nixon, C., Lubow, S.H., Armitage, P.J., Price, D.J., Doğan, S., King, A.: The kozai-lidov mechanism in hydrodynamical disks. Astrophys. J. Lett. 792, L33 (2014). doi:10.1088/2041-8205/792/2/L33, 1409.1226Google Scholar
  62. Martin, D.V., Mazeh, T., Fabrycky, D.C.: No circumbinary planets transiting the tightest Kepler binaries - a possible fingerprint of a third star. Mon. Not. R. Astron. Soc. 453, 3554–3567 (2015). doi:10.1093/mnras/stv1870, 1505.05749Google Scholar
  63. Marzari, F., Nelson, A.F.: Interaction of a giant planet in an inclined orbit with a circumstellar disk. Astrophys. J. 705, 1575–1583 (2009). doi:10.1088/0004-637X/705/2/1575, 0909.4375Google Scholar
  64. Marzari, F., Scholl, H.: Planetesimal accretion in binary star systems. Astrophys. J. 543, 328–339 (2000). doi:10.1086/317091ADSCrossRefGoogle Scholar
  65. Marzari, F., Thébault, P., Scholl, H.: Planet formation in highly inclined binaries. Astron. Astrophys. 507, 505–511 (2009). doi:10.1051/0004-6361/200912379, 0908.0803Google Scholar
  66. Mazeh, T., Shaham, J.: The orbital evolution of close triple systems - the binary eccentricity. Astron. Astrophys. 77, 145–151 (1979)ADSGoogle Scholar
  67. Meru, F.: Triggered fragmentation in self-gravitating discs: forming fragments at small radii. Mon. Not. R. Astron. Soc. 454, 2529–2538 (2015). doi:10.1093/mnras/stv2128, 1509.03635Google Scholar
  68. Moe, M., Di Stefano, R.: Mind your Ps and Qs: the interrelation between Period (P) and Mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017). doi:10.3847/1538-4365/aa6fb6, 1606.05347Google Scholar
  69. Moe, M., Kratter, K.M.: Dynamical formation of close binaries during the pre-main-sequence phase. Astrophys. J. 21 pp. http://adsabs.harvard.edu/abs/2017arXiv170609894M
  70. Mohanty, S., Ercolano, B., Turner, N.J.: Dead, undead, and zombie zones in protostellar disks as a function of stellar mass. Astrophys. J. 764, 65 (2013). doi:10.1088/0004-637X/764/1/65, 1212.3798Google Scholar
  71. Moriwaki, K., Nakagawa, Y.: A planetesimal accretion zone in a circumbinary disk. Astrophys. J. 609, 1065–1070 (2004). doi:10.1086/421342ADSCrossRefGoogle Scholar
  72. Morrison, S.J., Kratter, K.M.: Orbital stability of multi-planet systems: behavior at high masses. Astrophys. J. 823, 118 (2016). doi:10.3847/0004-637X/823/2/118, 1604.01037Google Scholar
  73. Muñoz, D.J., Lai, D.: Survival of planets around shrinking stellar binaries. Proc. Natl. Acad. Sci. 112, 9264–9269 (2015). doi:10.1073/pnas.1505671112, 1505.05514Google Scholar
  74. Muñoz, D.J., Kratter, K., Vogelsberger, M., Hernquist, L., Springel, V.: Stellar orbit evolution in close circumstellar disc encounters. Mon. Not. R. Astron. Soc. 446, 2010–2029 (2015). doi:10.1093/mnras/stu2220, 1410.4561Google Scholar
  75. Mudryk, L.R., Wu, Y.: Resonance overlap is responsible for ejecting planets in binary systems. Astrophys. J. 639, 423–431 (2006). doi:10.1086/499347, astro-ph/0511710Google Scholar
  76. Najita, J.R., Kenyon, S.J.: The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Mon. Not. R. Astron. Soc. 445, 3315–3329 (2014). doi:10.1093/mnras/stu1994, 1409.7021Google Scholar
  77. Naoz, S.: The eccentric kozai-lidov effect and its applications. Annu. Rev. Astron. Astrophys. 54, 441–489 (2016). doi:10.1146/annurev-astro-081915-023315, 1601.07175Google Scholar
  78. Nielsen, EL., De Rosa, RJ., Rameau, J., Wang, JJ., Esposito, T.M., Millar-Blanchaer, M.A., Marois, C., Vigan, A., Ammons, S.M., et al.: Evidence that the directly-imaged planet HD 131399 Ab is a background star. Astrophys. J. (2017). arXiv:1705.06851. http://adsabs.harvard.edu/abs/2017arXiv170506851N
  79. Nixon, C.J., Cossins, P.J., King, A.R., Pringle, J.E.: Retrograde accretion and merging supermassive black holes. Mon. Not. R. Astron. Soc. 412, 1591–1598 (2011). doi:10.1111/j.1365-2966.2010.17952.x, 1011.1914Google Scholar
  80. Offner, S.S.R., Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: The formation of low-mass binary star systems via turbulent fragmentation. Astrophys. J. 725, 1485–1494 (2010). doi:10.1088/0004-637X/725/2/1485, 1010.3702Google Scholar
  81. Offner, S.S.R., Dunham, M.M., Lee, K.I., Arce, H.G., Fielding, D.B.: The turbulent origin of outflow and spin misalignment in multiple star systems. Astrophys. J. Lett. 827, L11 (2016). doi:10.3847/2041-8205/827/1/L11, 1606.08445Google Scholar
  82. Ogilvie, G.I., Barker, A.J.: Local and global dynamics of eccentric astrophysical discs. Mon. Not. R. Astron. Soc. 445, 2621–2636 (2014). doi:10.1093/mnras/stu1795, 1409.6487Google Scholar
  83. Perets, H.B., Kratter, K.M.: The triple evolution dynamical instability: stellar collisions in the field and the formation of exotic binaries. Astrophys. J. 760, 99 (2012). doi:10.1088/0004-637X/760/2/99, 1203.2914Google Scholar
  84. Pineda, J.E., Offner, S.S.R., Parker, R.J., Arce, H.G., Goodman, A.A., Caselli, P., Fuller, G.A., Bourke, T.L., Corder, S.A.: The formation of a quadruple star system with wide separation. Nature 518, 213–215 (2015). doi:10.1038/nature14166ADSCrossRefGoogle Scholar
  85. Rabl, G., Dvorak, R.: Satellite-type planetary orbits in double stars - a numerical approach. Astron. Astrophys. 191, 385–391 (1988)ADSGoogle Scholar
  86. Rafikov, R.R.: Building tatooine: suppression of the direct secular excitation in kepler circumbinary planet formation. Astrophys. J. Lett. 764, L16 (2013a). doi:10.1088/2041-8205/764/1/L16, 1212.2217Google Scholar
  87. Rafikov, R.R.: Structure and evolution of circumbinary disks around supermassive black hole binaries. Astrophys. J. 774, 144 (2013b). doi:10.1088/0004-637X/774/2/144, 1205.5017Google Scholar
  88. Rafikov, R.R., Silsbee, K.: Planet formation in stellar binaries. I. Planetesimal dynamics in massive protoplanetary disks. Astrophys. J. 798, 69 (2015a). doi:10.1088/0004-637X/798/2/69, 1405.7054Google Scholar
  89. Rafikov, R.R., Silsbee, K.: Planet formation in stellar binaries. II. Overcoming the fragmentation barrier in α centauri and γ cephei-like systems. Astrophys. J. 798, 70 (2015b). doi:10.1088/0004-637X/798/2/70, 1408.4819Google Scholar
  90. Raghavan, D., McAlister, H.A., Henry, T.J., Latham, D.W., Marcy, G.W., Mason, B.D., Gies, D.R., White, R.J., ten Brummelaar, T.A.: A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010). doi:10.1088/0067-0049/190/1/1, 1007.0414Google Scholar
  91. Reipurth, B., Clarke, C.: The formation of brown dwarfs as ejected stellar embryos. Astron. J. 122, 432–439 (2001). doi:10.1086/321121, astro-ph/0103019Google Scholar
  92. Rodriguez, D.R., Duchêne, G., Tom, H., Kennedy, G.M., Matthews, B., Greaves, J., Butner, H.: Stellar multiplicity and debris discs: an unbiased sample. Mon. Not. R. Astron. Soc. 449, 3160–3170 (2015). doi:10.1093/mnras/stv483, 1503.01320Google Scholar
  93. Silsbee, K., Rafikov, R.R.: Birth locations of the Kepler circumbinary planets. Astrophys. J. 808, 58 (2015a). doi:10.1088/0004-637X/808/1/58, 1504.00460Google Scholar
  94. Silsbee, K., Rafikov, R.R.: Planet formation in binaries: dynamics of planetesimals perturbed by the eccentric protoplanetary disk and the secondary. Astrophys. J. 798, 71 (2015b). doi:10.1088/0004-637X/798/2/71, 1309.3290Google Scholar
  95. Simon, J.B., Armitage, P.J., Li, R., Youdin, A.N.: The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016). doi:10.3847/0004-637X/822/1/55, 1512.00009Google Scholar
  96. Smith, A.W., Lissauer, J.J.: Orbital stability of systems of closely-spaced planets. Icarus 201, 381–394 (2009). doi:10.1016/j.icarus.2008.12.027ADSCrossRefGoogle Scholar
  97. Smullen, R.A., Kratter, K.M., Shannon, A.: Planet scattering around binaries: ejections, not collisions. Mon. Not. R. Astron. Soc. 461, 1288–1301 (2016). doi:10.1093/mnras/stw1347, 1604.03121Google Scholar
  98. Sutherland, A.P., Fabrycky, D.C.: On the fate of unstable circumbinary planets: Tatooine’s close encounters with a death star. Astrophys. J. 818, 6 (2016). doi:10.3847/0004-637X/818/1/6, 1511.03274Google Scholar
  99. Syer, D., Clarke, C.J.: Satellites in discs: regulating the accretion luminosity. Mon. Not. R. Astron. Soc. 277, 758–766 (1995). doi:10.1093/mnras/277.3.758, astro-ph/9505021Google Scholar
  100. Throop, H.B., Bally, J.: Tail-end bondi-hoyle accretion in young star clusters: implications for disks, planets, and stars. Astron. J. 135, 2380–2397 (2008). doi:10.1088/0004-6256/135/6/2380, 0804.0438Google Scholar
  101. Tobin, J.J., Looney, L.W., Wilner, D.J., Kwon, W., Chandler, C.J., Bourke, T.L., Loinard, L., Chiang, H.F., Schnee, S., Chen, X.: A sub-arcsecond survey toward class 0 protostars in perseus: searching for signatures of protostellar disks. Astrophys. J. 805, 125 (2015). doi:10.1088/0004-637X/805/2/125, 1503.05189Google Scholar
  102. Tobin, J.J., Kratter, K.M., Persson, M.V., Looney, L.W., Dunham, M.M., Segura-Cox, D., Li, Z.Y., Chandler, C.J., Sadavoy, S.I., Harris, R.J., Melis, C., Pérez, L.M.: A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538, 483–486 (2016a). doi:10.1038/nature20094, 1610.08524Google Scholar
  103. Tobin, J.J., Looney, L.W., Li, Z.Y., Chandler, C.J., Dunham, M.M., Segura-Cox, D., Sadavoy, S.I., Melis, C., Harris, R.J., Kratter, K., Perez, L.: The VLA nascent disk and multiplicity survey of perseus protostars (VANDAM). II. Multiplicity of protostars in the perseus molecular cloud. Astrophys. J. 818, 73 (2016b). doi:10.3847/0004-637X/818/1/73, 1601.00692Google Scholar
  104. Tohline, J.E.: The origin of binary stars. Annu. Rev. Astron. Astrophys. 40, 349–385 (2002). doi:10.1146/annurev.astro.40.060401.093810ADSCrossRefGoogle Scholar
  105. Tokovinin, A.: From binaries to multiples. II. Hierarchical multiplicity of F and G dwarfs. Astron. J. 147, 87 (2014). doi:10.1088/0004-6256/147/4/87, 1401.6827Google Scholar
  106. Trilling, D.E., Stansberry, J.A., Stapelfeldt, K.R., Rieke, G.H., Su, K.Y.L., Gray, R.O., Corbally, C.J., Bryden, G., Chen, C.H., Boden, A., Beichman, C.A.: Debris disks in main-sequence binary systems. Astrophys. J. 658, 1289–1311 (2007). doi:10.1086/511668, astro-ph/0612029Google Scholar
  107. Vartanyan, D., Garmilla, J.A., Rafikov, R.R.: Tatooine nurseries: structure and evolution of circumbinary protoplanetary disks. Astrophys. J. 816, 94 (2016). doi:10.3847/0004-637X/816/2/94, 1509.07524Google Scholar
  108. Veras, D., Mustill, A.J., Gänsicke, B.T.: The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system. Mon. Not. R. Astron. Soc. 465, 1499–1504 (2017). doi:10.1093/mnras/stw2821, 1611.00007Google Scholar
  109. Wagner, K., Apai, D., Kasper, M., Kratter, K., McClure, M., Robberto, M., Beuzit, J.L.: Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science 353, 673–678 (2016). doi:10.1126/science.aaf9671, 1607.02525Google Scholar
  110. Wang, J., Xie, J.-W., Barclay, T., Fischer, D.A.: Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 AU and validation of four planets from the Kepler multiple planet candidates. Astrophys. J. 783, 4 2014. doi:10.1088/0004-637X/783/1/4, 1309.7097Google Scholar
  111. Wang, J., Fischer, D.A., Horch, E.P., Xie, J.W.: Influence of stellar multiplicity on planet formation. III. Adaptive optics imaging of Kepler stars with gas giant planets. Astrophys. J. 806, 248 (2015). doi:10.1088/0004-637X/806/2/248, 1505.05363Google Scholar
  112. Welsh, W.F., Orosz, J.A., Carter, J.A., Fabrycky, D.C.: Recent Kepler results on circumbinary planets. In: Haghighipour, N. (ed.) Formation, Detection, and Characterization of Extrasolar Habitable Planets, IAU Symposium, vol. 293, pp. 125–132 (2014). doi:10.1017/S1743921313012684, 1308.6328Google Scholar
  113. Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). doi:10.1146/annurev-astro-081710-102548, 1103.0556Google Scholar
  114. Williams, J.P., Mann, R.K., Di Francesco, J., Andrews, S.M., Hughes, A.M., Ricci, L., Bally, J., Johnstone, D., Matthews, B.: ALMA observations of a misaligned binary protoplanetary disk system in orion. Astrophys. J. 796, 120 (2014). doi:10.1088/0004-637X/796/2/120, 1410.3570Google Scholar
  115. Youdin, A.N., Chiang, E.I.: Particle pileups and planetesimal formation. Astrophys. J. 601, 1109–1119 (2004). doi:10.1086/379368, astro-ph/0309247Google Scholar
  116. Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005). doi:10.1086/426895, astro-ph/0409263Google Scholar
  117. Youdin, A.N., Kenyon, S.J.: From Disks to Planets, p. 1. Springer, Dordrecht(2013). doi:10.1007/978-94-007-5606-9_1Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of ArizonaTucsonUSA

Personalised recommendations