Advertisement

The Determination of Protoplanetary Disk Masses

  • Edwin A. Bergin
  • Jonathan P. Williams
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 445)

Abstract

In this article we introduce methods used to determine the gas and dust masses of protoplanetary disks, with an emphasis on the lesser characterized total gas mass . Our review encompasses all the indirect tracers and the methodology that is being used to isolate the hidden H2 via dust, CO, and HD emission . We discuss the overall calibration of gaseous tracers which is based on decades of study of the dense phases of the interstellar medium . At present, disk gas masses determined via CO and HD are (in a few instances) different by orders of magnitude, hinting at either significant evolution in total disk mass or in the CO abundance . Either of these would represent a fundamental physical or chemical process that appears to dominate the system on ∼ million year timescales. Efforts to reconcile these differences using existing and future facilities are discussed.

Notes

Acknowledgements

EAB was supported by funding from the National Science Foundation grant AST-1514670 and AST-1344133 (INSPIRE) along with NASA XRP grant NNX16AB48G. Reflective of taking the minority stance, JPW is supported only by NASA grant NNX15AC92G and Hawaiian aloha. We thank the editors, Oliver and Martin, for their hard work in making this book happen and gently but constantly pushing us to write this manuscript.

References

  1. Aikawa, Y., van Zadelhoff, G.J., van Dishoeck, E.F., Herbst, E.: Warm molecular layers in protoplanetary disks. Astron. Astrophys. 386, 622–632 (2002)ADSCrossRefGoogle Scholar
  2. Alexander, R., Pascucci, I., Andrews, S., Armitage, P., Cieza, L..: The dispersal of protoplanetary disks. Protostars and Planets VI, pp. 475–496. University of Arizona Press, Tucson (2014) doi:10.2458/azu_uapress_9780816531240-ch021, 1311.1819Google Scholar
  3. ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015). doi:10.1088/2041-8205/808/1/L3, 1503.02649Google Scholar
  4. Andrews, S.M.: Observations of solids in protoplanetary disks. Publ. Astron. Soc. Pac. 127, 961–993 (2015). doi:10.1086/683178, 1507.04758Google Scholar
  5. Andrews, S.M., Williams, J.P.: High-resolution submillimeter constraints on circumstellar disk structure. Astrophys. J. 659, 705–728 (2007). doi:10.1086/511741ADSCrossRefGoogle Scholar
  6. Andrews, S.M., Wilner, D.J., Espaillat, C., Hughes, A.M., Dullemond, C.P., McClure, M.K., Qi, C., Brown, J.M.: Resolved images of large cavities in protoplanetary transition disks. Astrophys. J. 732, 42 (2011). doi:10.1088/0004-637X/732/1/42, 1103.0284Google Scholar
  7. Andrews, S.M., Rosenfeld, K.A., Kraus, A.L., Wilner, D.J.: The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129 (2013). doi:10.1088/0004-637X/771/2/129, 1305.5262Google Scholar
  8. Andrews, S.M., Wilner, D.J., Zhu, Z., Birnstiel, T., Carpenter, J., Pérez, L.M., Bai, X.N., Öberg, K.I., Hughes, A.M., Isella, A., Ricci, L.: Ringed substructure and a gap at 1 AU in the nearest protoplanetary disk. Astrophys. J. 820, L40 (2016). doi:10.3847/2041-8205/820/2/L40ADSCrossRefGoogle Scholar
  9. Ansdell, M., Williams, J.P., van der Marel, N., Carpenter, J.M., Guidi, G., Hogerheijde, M., Mathews, G.S., Manara, C.F., Miotello, A., Natta, A., Oliveira, I., Tazzari, M., Testi, L., van Dishoeck, E.F., van Terwisga, S.E.: ALMA survey of lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016). doi:10.3847/0004-637X/828/1/46, 1604.05719Google Scholar
  10. Aresu, G., Kamp, I., Meijerink, R., Spaans, M., Vicente, S., Podio, L., Woitke, P., Menard, F., Thi, W.F., Güdel, M., Liebhart, A.: [O I] disk emission in the Taurus star-forming region. Astron. Astrophys. 566, A14 (2014). doi:10.1051/0004-6361/201322455, 1402.2488Google Scholar
  11. Armitage, P.J.: Astrophysics of Planet Formation. Cambridge University Press, Cambridge (2010)Google Scholar
  12. Asplund, M., Grevesse, N., Sauval, A.J., Scott, P.: The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). doi:10.1146/annurev.astro.46.060407.145222ADSCrossRefGoogle Scholar
  13. Bai, X.N.: Towards a global evolutionary model of protoplanetary disks. Astrophys. J. 821, 80 (2016). doi:10.3847/0004-637X/821/2/80, 1603.00484Google Scholar
  14. Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I - linear analysis. II - nonlinear evolution. Astrophys. J. 376, 214–233 (1991). doi:10.1086/170270Google Scholar
  15. Barenfeld, S.A., Carpenter, J.M., Ricci, L., Isella, A.: ALMA observations of circumstellar disks in the upper scorpius OB association. Astrophys. J. 827, 142 (2016). doi:10.3847/0004-637X/827/2/142, 1605.05772Google Scholar
  16. Baruteau, C., Bai, X., Mordasini, C., Mollière, P.: Formation, orbital and internal evolutions of Young planetary systems. Space Sci. Rev. 205, 77–124 (2016). doi:10.1007/s11214-016-0258-z, 1604.07558Google Scholar
  17. Beckwith, S.V.W., Sargent, A.I., Chini, R.S., Guesten, R.: A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924–945 (1990). doi:10.1086/115385ADSCrossRefGoogle Scholar
  18. Bergin, E.A., Tafalla, M.: Cold dark clouds: the initial conditions for star formation. Annu. Rev. Astron. Astrophys. 45, 339–396 (2007). doi:10.1146/annurev.astro.45.071206.100404ADSCrossRefGoogle Scholar
  19. Bergin, E.A., Alves, J., Huard, T., Lada, C.J.: N2H+ and C18O depletion in a cold dark cloud. Astrophys. J. Lett. 570, L101–L104 (2002)ADSCrossRefGoogle Scholar
  20. Bergin, E.A., Aikawa, Y., Blake, G.A., van Dishoeck, E.F.: The chemical evolution of protoplanetary disks. In: Protostars and Planets V, p 751. University of Arizona Press, Tucson (2007)Google Scholar
  21. Bergin, E.A., Hogerheijde, M.R., Brinch, C., et al.: Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk. Astron. Astrophys. 521, L33 (2010). doi:10.1051/0004-6361/201015104ADSCrossRefGoogle Scholar
  22. Bergin, E.A., Cleeves, L.I., Gorti, U., Zhang, K., Blake, G.A., Green, J.D., Andrews, S.M., Evans, N.J. II, Henning, T., Öberg, K., Pontoppidan, K., Qi, C., Salyk, C., van Dishoeck, E.F.: An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013). doi:10.1038/nature11805ADSCrossRefGoogle Scholar
  23. Bergin, E.A., Cleeves, L.I., Crockett, N., Blake, G.A.: Exploring the origins of carbon in terrestrial worlds. Faraday Discuss. 168, 61–79 (2014). doi:10.1039/C4FD00003J, http://dx.doi.org/10.1039/C4FD00003J ADSCrossRefGoogle Scholar
  24. Bergin, E.A., Blake, G.A., Ciesla, F., Hirschmann, M.M., Li, J.: Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proc. Natl. Acad. Sci. 112, 8965–8970 (2015). doi:10.1073/pnas.1500954112, 1507.04756Google Scholar
  25. Bergin, E.A., Du, F., Cleeves, L.I., Blake, G.A., Schwarz, K., Visser, R., Zhang, K.: Hydrocarbon emission rings in protoplanetary disks induced by dust evolution. Astrophys. J. 831, 101 (2016). doi:10.3847/0004-637X/831/1/101, 1609.06337Google Scholar
  26. Bertoldi, F., Timmermann, R., Rosenthal, D., Drapatz, S., Wright, C.M.: Detection of HD in the Orion molecular outflow. Astron. Astrophys. 346, 267–277 (1999)ADSGoogle Scholar
  27. Bianchi, S., Goncalves, J., Albrecht, M., Caselli, P., Chini, R., Galli, D., Walmsley, M.: Dust emissivity in the submm/mm. SCUBA and SIMBA observations of Barnard 68. Astron. Astrophys. 399, L43–L46 (2003)Google Scholar
  28. Bohlin, R.C., Savage, B.D., Drake, J.F.: A survey of interstellar H I from L-alpha absorption measurements. II. Astrophys. J. 224, 132–142 (1978). doi:10.1086/156357ADSCrossRefGoogle Scholar
  29. Boogert, A.C.A., Gerakines, P.A., Whittet, D.C.B.: Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015). doi:10.1146/annurev-astro-082214-122348, 1501.05317Google Scholar
  30. Bruderer, S., van Dishoeck, E.F., Doty, S.D., Herczeg, G.J.: The warm gas atmosphere of the HD 100546 disk seen by Herschel. Evidence of a gas-rich, carbon-poor atmosphere? Astron. Astrophys. 541, A91 (2012). doi:10.1051/0004-6361/201118218, 1201.4860Google Scholar
  31. Carmona, A., van den Ancker, M.E., Henning, T., Pavlyuchenkov, Y., Dullemond, C.P., Goto, M., Thi, W.F., Bouwman, J., Waters, L.B.F.M.: A search for mid-infrared molecular hydrogen emission from protoplanetary disks. Astron. Astrophys. 477, 839–852 (2008). doi:10.1051/0004-6361:20077846ADSCrossRefGoogle Scholar
  32. Carpenter, J.M., Wolf, S., Schreyer, K., Launhardt, R., Henning, T.: Evolution of cold circumstellar dust around solar-type stars. Astron. J. 129, 1049–1062 (2005). doi:10.1086/427131, astro-ph/0411020Google Scholar
  33. Casassus, S., van der Plas, G., M, S.P., Dent, W.R.F., Fomalont, E., Hagelberg, J., Hales, A., Jordán, A., Mawet, D., Ménard, F., Wootten, A., Wilner, D., Hughes, A.M., Schreiber, M.R., Girard, J.H., Ercolano, B., Canovas, H., Román, P.E., Salinas, V.: Flows of gas through a protoplanetary gap. Nature 493, 191–194 (2013). doi:10.1038/nature11769ADSCrossRefGoogle Scholar
  34. Caselli, P., Walmsley, C.M., Tafalla, M., Dore, L., Myers, P.C.: CO depletion in the starless cloud core L1544. Astrophys. J. Lett. 523, L165–L169 (1999). doi:10.1086/312280ADSCrossRefGoogle Scholar
  35. Ceccarelli, C., Caselli, P., Bockelée-Morvan, D., Mousis, O., Pizzarello, S., Robert, F., Semenov, D.: Deuterium fractionation: the Ariadne’s thread from the precollapse phase to meteorites and comets today. Protostars and Planets VI, pp 859–882. University of Arizona Press, Tucson (2014), 1403.7143Google Scholar
  36. Chapillon, E., Parise, B., Guilloteau, S., Dutrey, A., Wakelam, V.: C I observations in the CQ Tauri proto-planetary disk: evidence of a very low gas-to-dust ratio? Astron. Astrophys. 520, A61 (2010). doi:10.1051/0004-6361/201014841, 1006.5244Google Scholar
  37. Cleeves, L.I., Adams, F.C., Bergin, E.A.: Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. Astrophys. J. 772, 5 (2013). doi:10.1088/0004-637X/772/1/5, 1306.0902Google Scholar
  38. Connelly, J.N., Amelin, Y., Krot, A.N., Bizzarro, M.: Chronology of the solar system’s oldest solids. Astrophys. J. 675, L121 (2008). doi:10.1086/533586ADSCrossRefGoogle Scholar
  39. Cossins, P., Lodato, G., Testi, L.: Resolved images of self-gravitating circumstellar discs with ALMA. Mon. Not. R. Astron. Soc. 407, 181–188 (2010). doi:10.1111/j.1365-2966.2010.16934.x, 1004.5389Google Scholar
  40. D’Alessio, P., Canto, J., Calvet, N., Lizano, S.: Accretion disks around young objects. I. The detailed vertical structure. Astrophys. J. 500, 411 (1998). doi:10.1086/305702Google Scholar
  41. Dennison, D.M.: A note on the specific heat of the hydrogen molecule. R. Soc. London Proc. Ser. A 115, 483–486 (1927)ADSCrossRefGoogle Scholar
  42. Dickman, R.L.: The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds. Astrophys. J. Suppl. Ser. 37, 407–427 (1978). doi:10.1086/190535ADSCrossRefGoogle Scholar
  43. Dipierro, G., Lodato, G., Testi, L., de Gregorio Monsalvo, I.: How to detect the signatures of self-gravitating circumstellar discs with the Atacama Large Millimeter/sub-millimeter Array. Mon. Not. R. Astron. Soc. 444, 1919–1929 (2014). doi:10.1093/mnras/stu1584, 1409.2243Google Scholar
  44. Draine, B.T.: On the submillimeter opacity of protoplanetary disks. Astrophys. J. 636, 1114–1120 (2006). doi:10.1086/498130, astro-ph/0507292Google Scholar
  45. Du, F., Bergin, E.A.: Water vapor distribution in protoplanetary disks. Astrophys. J. 792, 2 (2014). doi:10.1088/0004-637X/792/1/2, 1408.2026Google Scholar
  46. Du, F., Bergin, E.A., Hogerheijde, M.R.: Volatile depletion in the TW Hydrae disk atmosphere. Astrophys. J. Lett. 807, L32 (2015). doi:10.1088/2041-8205/807/2/L32, 1506.03510Google Scholar
  47. Du, F., Bergin, E.A., Hogerheijde, M.R., van Dishoeck, E.F., Blake, G.A., Bruderer, S., Cleeves, L.I., Dominik, C., Fedele, D., Lis, D.C., Melnick, G.J., Neufeld, D.A., Pearson, J.C., Yildiz, U.: Survey of water lines in protoplanetary disk: indications of systematic volatile depletion. Astrophys. J. 842, 98 (2017). doi:10.3847/1538-4357/aa70eeADSCrossRefGoogle Scholar
  48. Dutrey, A., Guilloteau, S., Guelin, M.: Chemistry of protosolar-like nebulae: the molecular content of the DM Tau and GG Tau disks. Astron. Astrophys. 317, L55–L58 (1997)ADSGoogle Scholar
  49. Dutrey, A., Guilloteau, S., Simon, M.: The BP Tau disk: a missing link between Class II and III objects? Astron. Astrophys. 402, 1003–1011 (2003). doi:10.1051/0004-6361:20030317ADSCrossRefGoogle Scholar
  50. Eistrup, C., Walsh, C., van Dishoeck, E.F.: Setting the volatile composition of (exo)planet-building material. Does chemical evolution in disk midplanes matter? Astron. Astrophys. 595, 1–15 (2016)Google Scholar
  51. Epstein, R.I., Lattimer, J.M., Schramm, D.N.: The origin of deuterium. Nature 263, 198–202 (1976). doi:10.1038/263198a0ADSCrossRefGoogle Scholar
  52. Evans, N.J., et al.: The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Suppl. Ser. 181, 321–350 (2009). doi:10.1088/0067-0049/181/2/321ADSCrossRefGoogle Scholar
  53. Favre, C., Cleeves, L.I., Bergin, E.A., Qi, C., Blake, G.A.: A significantly low CO abundance toward the TW Hya protoplanetary disk: a path to active carbon chemistry? Astrophys. J. Lett. 776, L38 (2013). doi:10.1088/2041-8205/776/2/L38, 1309.5370Google Scholar
  54. Field, G.B., Somerville, W.B., Dressler, K.: Hydrogen molecules in astronomy. Annu. Rev. Astron. Astrophys. 4, 207 (1966). doi:10.1146/annurev.aa.04.090166.001231ADSCrossRefGoogle Scholar
  55. Fitzpatrick, E.L.: Interstellar extinction in the Milky Way galaxy. In: ASP Conference Series, 309: Astrophysics of Dust, pp. 33. ASP, San Francisco (2004)Google Scholar
  56. France, K., Burgh, E.B., Herczeg, G.J., Schindhelm, E., Yang, H., Abgrall, H., Roueff, E., Brown, A., Brown, J.M., Linsky, J.L.: CO and H2 absorption in the AA Tauri circumstellar disk. Astrophys. J. 744, 22 (2012). doi:10.1088/0004-637X/744/1/22, 1109.1831Google Scholar
  57. France, K., Herczeg, G.J., McJunkin, M., Penton, S.V.: CO/H2 abundance ratio ∼ 10−4 in a protoplanetary disk. Astrophys. J. 794, 160 (2014). doi:10.1088/0004-637X/794/2/160, 1409.0861Google Scholar
  58. Frerking, M.A., Langer, W.D., Wilson, R.W.: The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. Astrophys. J. 262, 590–605 (1982). doi:10.1086/160451ADSCrossRefGoogle Scholar
  59. Furuya, K., Aikawa, Y.: (2014) Reprocessing of ices in turbulent protoplanetary disks: carbon and nitrogen chemistry. Astrophys. J. 790, 97. doi:10.1088/0004-637X/790/2/97, 1406.3507Google Scholar
  60. Goldsmith, P.F., Bergin, E.A., Lis, D.C.: Carbon monoxide and dust column densities: the dust-to-gas ratio and structure of three giant molecular cloud cores. Astrophys. J. 491, 615–637 (1997)ADSCrossRefGoogle Scholar
  61. Gorti, U., Hollenbach, D., Najita, J., Pascucci, I.: Emission lines from the gas disk around TW Hydra and the origin of the inner hole. Astrophys. J. 735, 90 (2011) doi:10.1088/0004-637X/735/2/90ADSCrossRefGoogle Scholar
  62. Goto, M., Geballe, T.R., Usuda, T.: Infrared absorption lines toward NGC 7538 IRS 1: abundances of H2, H3+, and CO. Astrophys. J. 806, 57 (2015). doi:10.1088/0004-637X/806/1/57ADSCrossRefGoogle Scholar
  63. Gressel, O., Turner, N.J., Nelson, R.P., McNally, C.P.: Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J. 801, 84 (2015). doi:10.1088/0004-637X/801/2/84, 1501.05431Google Scholar
  64. Guillot, T.: A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47, 1183–1200 (1999). arXiv:astro-ph/9907402Google Scholar
  65. Harjunpää, P., Lehtinen, K., Haikala, L.K.: The relationship of CO abundance to extinction and N(H2): observations of globules and the dependence on star formation activity. Astron. Astrophys. 421, 1087–1099 (2004). doi:10.1051/0004-6361:20035752ADSCrossRefGoogle Scholar
  66. Herbst, E., Klemperer, W.: The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505–534 (1973)ADSCrossRefGoogle Scholar
  67. Hogerheijde, M.R., Bergin, E.A., Brinch, C., et al.: Detection of the water reservoir in a forming planetary system. Science 334, 338–340 (2011). doi:10.1126/science.1208931ADSCrossRefGoogle Scholar
  68. Hotzel, S., Harju, J., Juvela, M., Mattila, K., Haikala, L.K.: C18O abundance in the nearby globule Barnard 68. Astron. Astrophys. 391, 275–285 (2002). doi:10.1051/0004-6361:20020786ADSCrossRefGoogle Scholar
  69. Howard, A.W., Marcy, G.W., Bryson, S.T., Jenkins, J.M., Rowe, J.F., Batalha, N.M., Borucki, W.J., Koch, D.G., Dunham, E.W., Gautier, T.N. III, Van Cleve, J., Cochran, W.D., Latham, D.W., Lissauer, J.J., Torres, G., Brown, T.M., Gilliland, R.L., Buchhave, L.A., Caldwell, D.A., Christensen-Dalsgaard, J., Ciardi, D., Fressin, F., Haas, M.R., Howell, S.B., Kjeldsen, H., Seager, S., Rogers, L., Sasselov, D.D., Steffen, J.H., Basri, G.S., Charbonneau, D., Christiansen, J., Clarke, B., Dupree, A., Fabrycky, D.C., Fischer, D.A., Ford, E.B., Fortney, J.J., Tarter, J., Girouard, F.R., Holman, M.J., Johnson, J.A., Klaus, T.C., Machalek, P., Moorhead, A.V., Morehead, R.C., Ragozzine, D., Tenenbaum, P., Twicken, J.D., Quinn, S.N., Isaacson, H., Shporer, A., Lucas, P.W., Walkowicz, L.M., Welsh, W.F., Boss, A., Devore, E., Gould, A., Smith, J.C., Morris, R.L., Prsa, A., Morton, T.D., Still, M., Thompson, S.E., Mullally, F., Endl, M., MacQueen, P.J.: Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012). doi:10.1088/0067-0049/201/2/15, 1103.2541Google Scholar
  70. Hughes, A.M., Wilner, D.J., Qi, C., Hogerheijde, M.R.: Gas and dust emission at the outer edge of protoplanetary disks. Astrophys. J. 678, 1119–1126 (2008). doi:10.1086/586730, 0801.4763Google Scholar
  71. Kama, M., Bruderer, S., Carney, M., Hogerheijde, M., van Dishoeck, E.F., Fedele, D., Baryshev, A., Boland, W., Güsten, R., Aikutalp, A., Choi, Y., Endo, A., Frieswijk, W., Karska, A., Klaassen, P., Koumpia, E., Kristensen, L., Leurini, S., Nagy, Z., Perez Beaupuits, J.P., Risacher, C., van der Marel, N., van Kempen, T.A., van Weeren, R.J., Wyrowski, F., Yıldız, U.A.: Observations and modelling of CO and [CI] in disks. First detections of [CI] and constraints on the carbon abundance. Astron. Astrophys. 588, A108 (2016a)Google Scholar
  72. Kama, M., Bruderer, S., van Dishoeck, E.F., Hogerheijde, M., Folsom, C.P., Miotello, A., Fedele, D., Belloche, A., Güsten, R., Wyrowski, F.: Volatile carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546. Astron. Astrophys. 592, A83 (2016b)Google Scholar
  73. Kamp, I., Thi, W.F., Meeus, G., Woitke, P., Pinte, C., Meijerink, R., Spaans M., Pascucci, I., Aresu, G., Dent, W.R.F.: Uncertainties in water chemistry in disks: an application to TW Hydrae. Astron. Astrophys. 559:A24 (2013). doi:10.1051/0004-6361/201220621, 1308.1772Google Scholar
  74. Kastner, J.H., Zuckerman, B., Weintraub, D.A., Forveille, T.: X-ray and molecular emission from the nearest region of recent star formation. Science 277, 67–71 (1997). doi:10.1126/science.277.5322.67ADSCrossRefGoogle Scholar
  75. Kauffmann, J., Bertoldi, F., Bourke, T.L., Evans, N.J. II, Lee, C.W.: MAMBO mapping of Spitzer c2d small clouds and cores. Astron. Astrophys. 487, 993–1017 (2008). doi:10.1051/0004-6361:200809481ADSCrossRefGoogle Scholar
  76. Klaassen, P.D., Juhasz, A., Mathews, G.S., Mottram, J.C., De Gregorio-Monsalvo, I., van Dishoeck, E.F., Takahashi, S., Akiyama, E., Chapillon, E., Espada, D., Hales, A., Hogerheijde, M.R., Rawlings, M., Schmalzl, M., Testi, L.: ALMA detection of the rotating molecular disk wind from the young star HD 163296. Astron. Astrophys. 555, A73 (2013). doi:10.1051/0004-6361/201321129, 1304.5436Google Scholar
  77. Klaassen, P.D., Mottram, J.C., Maud, L.T., Juhasz, A.: The winds from HL Tau. Mon. Not. R. Astron. Soc. 460, 627–633 (2016). doi:10.1093/mnras/stw989, 1604.07285Google Scholar
  78. Kleine, T., Münker, C., Mezger, K., Palme, H.: Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002). doi:10.1038/nature00982ADSCrossRefGoogle Scholar
  79. Kramer, C., Alves, J., Lada, C., Lada, E., Sievers, A., Ungerechts, H., Walmsley, M.: The millimeter wavelength emissivity in IC5146. Astron. Astrophys. 329, L33–L36 (1998)ADSGoogle Scholar
  80. Kramer, C., Alves, J., Lada, C.J., Lada, E.A., Sievers, A., Ungerechts, H., Walmsley, C.M.: Depletion of CO in a cold dense cloud core of IC 5146. Astron. Astrophys. 342, 257–270 (1999)ADSGoogle Scholar
  81. Krijt, S., Ciesla, F.J., Bergin, E.A.: Tracing water vapor and ice during dust growth. Astrophys. J. 833, 285 (2016). doi:10.3847/1538-4357/833/2/285ADSCrossRefGoogle Scholar
  82. Lacy, J.H., Knacke, R., Geballe, T.R., Tokunaga, A.T.: Detection of absorption by H2 in molecular clouds: a direct measurement of the H2:CO ratio. Astrophys. J. 428, L69–L72 (1994). doi:10.1086/187395ADSCrossRefGoogle Scholar
  83. Lada, C.J., Lada, E.A., Clemens, D.P., Bally, J.: Dust extinction and molecular gas in the dark cloud IC 5146. Astrophys. J. 429, 694–709 (1994). doi:10.1086/174354ADSCrossRefGoogle Scholar
  84. Lay, O.P., Carlstrom, J.E., Hills, R.E.: Constraints on the HL Tauri protostellar disk from millimeter- and submillimeter-wave interferometry. Astrophys. J. 489, 917–927 (1997)ADSCrossRefGoogle Scholar
  85. Lellouch, E., Bézard, B., Fouchet, T., Feuchtgruber, H., Encrenaz, T., de Graauw, T.: The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370, 610–622 (2001). doi:10.1051/0004-6361:20010259ADSCrossRefGoogle Scholar
  86. Loinard, L.: The Gould’s belt distances survey. In: de Grijs, R. (ed.) Advancing the Physics of Cosmic Distances, IAU Symposium, vol. 289, pp. 36–43 (2013). doi:10.1017/S1743921312021072, 1211.1742Google Scholar
  87. Manara, C.F., Rosotti, G., Testi, L., Natta, A., Alcalá, J.M., Williams, J.P., Ansdell, M., Miotello, A., van der Marel, N., Tazzari, M., Carpenter, J., Guidi, G., Mathews, G.S., Oliveira, I., Prusti, T., van Dishoeck, E.F.: Evidence for a correlation between mass accretion rates onto young stars and the mass of their protoplanetary disks. Astron. Astrophys. 591, L3 (2016). doi:10.1051/0004-6361/201628549, 1605.03050Google Scholar
  88. Mathews, G.S., Williams, J.P., Ménard, F., Phillips, N., Duchêne, G., Pinte, C.: The late stages of protoplanetary disk evolution: a millimeter survey of upper scorpius. Astrophys. J. 745, 23 (2012). doi:10.1088/0004-637X/745/1/23, 1111.0101Google Scholar
  89. McClure, M.K., Bergin, E.A., Cleeves, L.I., van Dishoeck, E., Blake, G., Evans, N.J., Green, J.D., Henning, T.K., Öberg, K.I., Pontoppidan, K.M., Salyk, C.: Mass measurements in protoplanetary disks from hydroden deuteride. Astrophys. J. 831, 167 (2016). doi:10.3847/0004-637X/831/2/167ADSCrossRefGoogle Scholar
  90. McKeegan, K.D., Kallio, A.P.A., Heber, V.S., Jarzebinski, G., Mao, P.H., Coath, C.D., Kunihiro, T., Wiens, R.C., Nordholt, J.E., Moses, R.W., Reisenfeld, D.B., Jurewicz, A.J.G., Burnett, D.S.: The oxygen isotopic composition of the sun inferred from captured solar wind. Science 332, 1528 (2011). doi:10.1126/science.1204636ADSCrossRefGoogle Scholar
  91. Meijerink, R., Pontoppidan, K.M., Blake, G.A., Poelman, D.R., Dullemond, C.P.: Radiative transfer models of mid-infrared H2O lines in the planet-forming region of circumstellar disks. Astrophys. J. 704, 1471–1481 (2009). doi:10.1088/0004-637X/704/2/1471, 0909.0975Google Scholar
  92. Miotello, A., Bruderer, S., van Dishoeck, E.F.: Protoplanetary disk masses from CO isotopologue line emission. Astron. Astrophys. 572, A96 (2014). doi:10.1051/0004-6361/201424712, 1410.2093Google Scholar
  93. Miotello, A., van Dishoeck, E.F., Kama, M., Bruderer, S.: Determining protoplanetary disk gas masses from CO isotopologues line observations. Astron. Astrophys. 594, A85 (2016). doi:10.1051/0004-6361/201628159, 1605.07780Google Scholar
  94. Mishra, A., Li, A.: Probing the role of carbon in the interstellar ultraviolet extinction. Astrophys. J. 809, 120 (2015). doi:10.1088/0004-637X/809/2/120, 1507.06599Google Scholar
  95. Müller, H.S.P., Schlöder, F., Stutzki, J., Winnewisser, G.: The Cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005). doi:10.1016/j.molstruc.2005.01.027Google Scholar
  96. Nomura, H., Tsukagoshi, T., Kawabe, R., Ishimoto, D., Okuzumi, S., Muto, T., Kanagawa, K.D., Ida, S., Walsh, C., Millar, T.J., Bai, X.N.: ALMA observations of a gap and a ring in the protoplanetary disk around TW Hya. Astrophys. J. Lett. 819, L7 (2016). doi:10.3847/2041-8205/819/1/L7, 1512.05440Google Scholar
  97. Öberg, K.I., Murray-Clay, R., Bergin, E.A.: The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. Lett. 743, L16 (2011). doi:10.1088/2041-8205/743/1/L16, 1110.5567Google Scholar
  98. Oliveira, C.M., Hébrard, G.: Variations in the D/H ratio of extended sight lines from far ultraviolet spectroscopic explorer observations. Astrophys. J. 653, 345–360 (2006). doi:10.1086/508611, astro-ph/0609236Google Scholar
  99. Ossenkopf, V., Henning, T.: Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994)ADSGoogle Scholar
  100. Parvathi, V.S., Sofia, U.J., Murthy, J., Babu, B.R.S.: Probing the role of carbon in ultraviolet extinction along galactic sight lines. Astrophys. J. 760, 36 (2012). doi:10.1088/0004-637X/760/1/36ADSCrossRefGoogle Scholar
  101. Pascucci, I., et al.: Formation and evolution of planetary systems: upper limits to the gas mass in disks around sun-like stars. Astrophys. J. 651, 1177 (2006)ADSCrossRefGoogle Scholar
  102. Pascucci, I., Sterzik, M., Alexander, R.D., Alencar, S.H.P., Gorti, U., Hollenbach, D., Owen, J., Ercolano, B., Edwards, S.: The photoevaporative wind from the disk of TW Hya. Astrophys. J. 736, 13 (2011). doi:10.1088/0004-637X/736/1/13, 1105.0045Google Scholar
  103. Pascucci, I., Testi, L., Herczeg, G.J., Long, F., Manara, C.F., Hendler, N., Mulders, G.D., Krijt, S., Ciesla, F., Henning, T., Mohanty, S., Drabek-Maunder, E., Apai, D., Szűcs, L., Sacco, G., Olofsson, J.: A steeper than linear disk mass – stellar mass scaling relation. Astrophys. J. 831, 125 (2016). doi:10.3847/0004-637X/831/2/125, 1608.03621Google Scholar
  104. Pérez, L.M., Chandler, C.J., Isella, A., Carpenter, J.M., Andrews, S.M., Calvet, N., Corder, S.A., Deller, A.T., Dullemond, C.P., Greaves, J.S., Harris, R.J., Henning, T., Kwon, W., Lazio, J., Linz, H., Mundy, L.G., Ricci, L., Sargent, A.I., Storm, S., Tazzari, M., Testi, L., Wilner, D.J.: Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. Astrophys. J. 813, 41 (2015). doi:10.1088/0004-637X/813/1/41, 1509.07520Google Scholar
  105. Pérez, L.M., Carpenter, J.M., Andrews, S.M., Ricci, L., Isella, A., Linz, H., Sargent, A.I., Wilner, D.J., Henning, T., Deller, A.T., Chandler, C.J., Dullemond, C.P., Lazio, J., Menten, K.M., Corder, S.A., Storm, S., Testi, L., Tazzari, M., Kwon, W., Calvet, N., Greaves, J.S., Harris, R.J., Mundy, L.G.: Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016). doi:10.1126/science.aaf8296, 1610.05139Google Scholar
  106. Pineda, J.L., Goldsmith, P.F., Chapman, N., Snell, R.L., Li, D., Cambrésy, L., Brunt, C.: The relation between gas and dust in the Taurus molecular cloud. Astrophys. J. 721, 686–708 (2010). doi:10.1088/0004-637X/721/1/686, 1007.5060Google Scholar
  107. Pollack, J.B., Hollenbach, D., Beckwith, S., Simonelli, D.P., Roush, T., Fong, W.: Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys. J. 421, 615–639 (1994). doi:10.1086/173677ADSCrossRefGoogle Scholar
  108. Qi, C., Öberg, K.I., Wilner, D.J., D’Alessio, P., Bergin, E., Andrews, S.M., Blake, G.A., Hogerheijde, M.R., van Dishoeck, E.F.: Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013). doi:10.1126/science.1239560, 1307.7439Google Scholar
  109. Rachford, B.L., Snow, T.P., Destree, J.D., Ross, T.L., Ferlet, R., Friedman, S.D., Gry, C., Jenkins, E.B., Morton, D.C., Savage, B.D., Shull, J.M., Sonnentrucker, P., Tumlinson, J., Vidal-Madjar, A., Welty, D.E., York, D.G.: Molecular hydrogen in the far ultraviolet spectroscopic explorer translucent lines of sight: the full sample. Astrophys. J. Suppl. Ser. 180, 125–137 (2009). doi:10.1088/0067-0049/180/1/125ADSCrossRefGoogle Scholar
  110. Reboussin, L., Wakelam, V., Guilloteau, S., Hersant, F., Dutrey, A.: Chemistry in protoplanetary disks: the gas-phase CO/H2 ratio and the carbon reservoir. Astron. Astrophys. 579, A82 (2015). doi:10.1051/0004-6361/201525885, 1505.01309Google Scholar
  111. Ripple, F., Heyer, M.H., Gutermuth, R., Snell, R.L., Brunt, C.M.: CO abundance variations in the Orion molecular cloud. Mon. Not. R. Astron. Soc. 431, 1296–1313 (2013). doi:10.1093/mnras/stt247ADSCrossRefGoogle Scholar
  112. Rosenfeld, K.A., Andrews, S.M., Hughes, A.M., Wilner, D.J., Qi, C.: A spatially resolved vertical temperature gradient in the HD 163296 disk. Astrophys. J. 774, 16 (2013). doi:10.1088/0004-637X/774/1/16, 1306.6475Google Scholar
  113. Ruíz-Rodríguez, D., Cieza, L.A., Williams, J.P., Principe, D., Tobin, J.J., Zhu, Z., Zurlo, A.: The ALMA early science view of FUor/EXor objects - III. The slow and wide outflow of V883 Ori. Mon. Not. R. Astron. Soc. 468, 3266–3276 (2017). doi:10.1093/mnras/stx703Google Scholar
  114. Sargent, A.I., Beckwith, S.: Kinematics of the circumstellar gas of HL Tauri and R Monocerotis. Astrophys. J. 323, 294–305 (1987). doi:10.1086/165827ADSCrossRefGoogle Scholar
  115. Sarkar, S.: Big bang nucleosynthesis and physics beyond the standard model. Rep. Prog. Phys. 59, 1493–1609 (1996). doi:10.1088/0034-4885/59/12/001, hep-ph/9602260Google Scholar
  116. Schwarz, K.R., Bergin, E.A., Cleeves, L.I., Blake, G.A., Zhang, K., Öberg, K.I., van Dishoeck, E.F., Qi, C.: The radial distribution of H2 and CO in TW Hya as revealed by resolved ALMA observations of CO isotopologues. Astrophys. J. 823, 91 (2016). doi:10.3847/0004-637X/823/2/91, 1603.08520Google Scholar
  117. Semenov, D.A., Chemistry in protoplanetary disks. In: Zakharova, P.E., Kuznetsov, E.D., Ostrovskii, A.B., Salii, S.V., Sobolev, A.M., Kholshevnikov, K.V., Shustov, B.M. (eds.) Physics of Space: The 41st Annual Student Scientific Conference, pp. 130–155 (2012)Google Scholar
  118. Snow, T.P., Ross, T.L., Destree, J.D., Drosback, M.M., Jensen, A.G., Rachford, B.L., Sonnentrucker, P., Ferlet, R.: A new FUSE survey of interstellar HD. Astrophys. J. 688, 1124–1136 (2008). doi:10.1086/592288, 0808.0926Google Scholar
  119. Strom, K.M., Strom, S.E., Edwards, S., Cabrit, S., Skrutskie, M.F.: Circumstellar material associated with solar-type pre-main-sequence stars - a possible constraint on the timescale for planet building. Astron. J. 97, 1451–1470 (1989). doi:10.1086/115085ADSCrossRefGoogle Scholar
  120. Suutarinen, A., Haikala, L.K., Harju, J., Juvela, M., André, P., Kirk, J.M., Könyves, V., White, G.J.: Determination of the far-infrared dust opacity in a prestellar core. Astron. Astrophys. 555, A140 (2013). doi:10.1051/0004-6361/201219103, 1306.3156Google Scholar
  121. Tazzari, M., Testi, L., Ercolano, B., Natta, A., Isella, A., Chandler, C.J., Pérez, L.M., Andrews, S., Wilner, D.J., Ricci, L., Henning, T., Linz, H., Kwon, W., Corder, S.A., Dullemond, C.P., Carpenter, J.M., Sargent, A.I., Mundy, L., Storm, S., Calvet, N., Greaves, J.A., Lazio, J., Deller, A.T.: Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. Astron. Astrophys. 588, A53 (2016). doi:10.1051/0004-6361/201527423, 1512.05679Google Scholar
  122. Testi, L., Birnstiel, T., Ricci, L., Andrews, S., Blum, J., Carpenter, J., Dominik, C., Isella, A., Natta, A., Williams, J.P., Wilner, D.J.: Dust evolution in protoplanetary disks. Protostars and Planets VI, pp. 339–361. University of Arizona Press, Tucson (2014). doi:10.2458/azu_uapress_9780816531240-ch015Google Scholar
  123. Thi, W.F., Mathews, G., Ménard, F., Woitke, P., Meeus, G., Riviere-Marichalar, P., Pinte, C., Howard, C.D., Roberge, A., Sandell, G., Pascucci, I., Riaz, B., Grady, C.A., Dent, W.R.F., Kamp, I., Duchêne, G., Augereau, J.C., Pantin, E., Vandenbussche, B., Tilling, I., Williams, J.P., Eiroa, C., Barrado, D., Alacid, J.M., Andrews, S., Ardila, D.R., Aresu, G., Brittain, S., Ciardi, D.R., Danchi, W., Fedele, D., de Gregorio-Monsalvo, I., Heras, A., Huelamo, N., Krivov, A., Lebreton, J., Liseau, R., Martin-Zaidi, C., Mendigutía, I., Montesinos, B., Mora, A., Morales-Calderon, M., Nomura, H., Phillips, N., Podio, L., Poelman, D.R., Ramsay, S., Rice, K., Solano, E., Walker, H., White, G.J., Wright, G.: Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass. Astron. Astrophys. 518, L125 (2010). doi:10.1051/0004-6361/201014578Google Scholar
  124. Turner, N.J., Fromang, S., Gammie, C., Klahr, H., Lesur, G., Wardle, M., Bai, X.N.: Transport and accretion in planet-forming disks. Protostars and Planets VI, pp. 411–432. University of Arizona Press, Tucson (2014). doi:10.2458/azu_uapress_9780816531240-ch018, 1401.7306Google Scholar
  125. van der Marel, N., van Dishoeck, E.F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C.P., van Kempen, T.A., Schmalzl, M., Brown, J.M., Herczeg, G.J., Mathews, G.S., Geers, V.: A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013). doi:10.1126/science.1236770, 1306.1768Google Scholar
  126. van Dishoeck, E.F., Black, J.H.: The photodissociation and chemistry of interstellar CO. Astrophys. J. 334, 771–802 (1988)ADSCrossRefGoogle Scholar
  127. Williams, J.P.: Astronomical evidence for the rapid growth of millimeter-sized particles in protoplanetary disks. Meteorit. Planet. Sci. 47, 1915–1921 (2012). doi:10.1111/maps.12028, 1205.2461Google Scholar
  128. Williams, J.P., Best, W.M.J.: A parametric modeling approach to measuring the gas masses of circumstellar disks. Astrophys. J. 788, 59 (2014). doi:10.1088/0004-637X/788/1/59, 1312.0151Google Scholar
  129. Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011). doi:10.1146/annurev-astro-081710-102548ADSCrossRefGoogle Scholar
  130. Williams, J.P., McPartland, C.: Measuring protoplanetary disk gas surface density profiles with ALMA. Astrophys. J. 830, 32 (2016). doi:10.3847/0004-637X/830/1/32, 1606.05646Google Scholar
  131. Williams, J.P., Cieza, L.A., Andrews, S.M., Coulson, I.M., Barger, A.J., Casey, C.M., Chen, C.C., Cowie, L.L., Koss, M., Lee, N., Sanders, D.B.: A SCUBA-2 850-μm survey of protoplanetary discs in the σ Orionis cluster. Mon. Not. R. Astron. Soc. 435:1671–1679 (2013). doi:10.1093/mnras/stt1407, 1307.7174Google Scholar
  132. Wilner, D.J.: Imaging protoplanetary disks with a square kilometer array. New Astron. Rev. 48, 1363–1375 (2004). doi:10.1016/j.newar.2004.09.041, astro-ph/0412336Google Scholar
  133. Woitke, P., Kamp, I., Thi, W.F.: Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim. Astron. Astrophys. 501, 383–406 (2009). doi:10.1051/0004-6361/200911821Google Scholar
  134. Wolcott-Green, J., Haiman, Z.: Suppression of HD cooling in protogalactic gas clouds by Lyman-Werner radiation. Mon. Not. R. Astron. Soc. 412, 2603–2616 (2011). doi:10.1111/j.1365-2966.2010.18080.x, 1009.1087Google Scholar
  135. Wood, B.E., Linsky, J.L., Hébrard, G., Williger, G.M., Moos, H.W., Blair, W.P.: Two new low galactic D/H measurements from the far ultraviolet spectroscopic explorer. Astrophys. J. 609, 838–853 (2004). doi:10.1086/421325, astro-ph/0403606Google Scholar
  136. Yuan, Y., Neufeld, D.A., Sonnentrucker, P., Melnick, G.J., Watson, D.M.: Spitzer observations of shock-excited hydrogen deuteride in IC 443C, HH 7, and HH 54: probing the gas-phase deuterium abundance in the dense interstellar medium. Astrophys. J. 753, 126 (2012). doi:10.1088/0004-637X/753/2/126ADSCrossRefGoogle Scholar
  137. Zurlo, A., Cieza, L.A., Williams, J.P., Canovas, H., Perez, S., Hales, A., Mužić, K., Principe, D.A., Ruíz-Rodríguez, D., Tobin, J., Zhang, Y., Zhu, Z., Casassus, S., Prieto, J.L.: The ALMA early science view of FUor/EXor objects. I. Through the looking-glass of V2775 Ori (2016). ArXiv e-prints 1611.00765Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of MichiganAnn ArborUSA
  2. 2.Institute for AstronomyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations