Skip to main content

Tissue Organoids: Liver

  • Chapter
  • First Online:
Tumor Organoids

Abstract

The development of novel and consistent biologic surrogates for drug discovery, toxicology, and cancer research is presently intense and involves a growing number of research groups and institutions around the world. The Twilight of the days of immortalized cell lines as the workhorse of most of our drug development and cancer research efforts seem now to be heading to their end with the introduction of body-on-a-chip platforms, bioengineered tissues and stem cell organoids. In this chapter, we describe the fundamental work and the different strategies that lead to some of the breakthroughs in the generation of hepatic tissue ex vivo. Lastly, we define its increasing use and applications by pharmaceutical industry and research laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godoy P et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Howard RB, Christensen AK, Gibbs FA, Pesch LA (1967) The enzymatic preparation of isolated intact parenchymal cells from rat liver. J Cell Biol 35:675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  6. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG (1989) Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J: official publication of the Federation of American Societies for Experimental Biology 3:174–177

    CAS  Google Scholar 

  7. Abu-Absi SF, Friend JR, Hansen LK, Hu WS (2002) Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res 274:56–67

    Article  CAS  PubMed  Google Scholar 

  8. Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184

    Article  CAS  PubMed  Google Scholar 

  9. Glicklis R, Merchuk JC, Cohen S (2004) Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng 86:672–680

    Article  CAS  PubMed  Google Scholar 

  10. Moscona A (1961) Rotation-mediated histogenetic aggregation of dissociated cells A quantifiable approach to cell interactions in vitro. Exp Cell Res 22:455–475

    Article  CAS  PubMed  Google Scholar 

  11. Landry J, Bernier D, Ouellet C, Goyette R, Marceau N (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 101:914–923

    Article  CAS  PubMed  Google Scholar 

  12. Koide N et al (1990) Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res 186:227–235

    Article  CAS  PubMed  Google Scholar 

  13. Brophy CM et al (2009) Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function. Hepatology 49:578–586

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180

    Article  CAS  PubMed  Google Scholar 

  15. Inamori M, Mizumoto H, Kajiwara T (2009) An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng Part A 15:2029–2037

    Article  CAS  PubMed  Google Scholar 

  16. Abu-Absi SF, Hansen LK, Hu WS (2004) Three-dimensional co-culture of hepatocytes and stellate cells. Cytotechnology 45:125–140

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shteyer E et al (2014) Reduced liver cell death using an alginate scaffold bandage: a novel approach for liver reconstruction after extended partial hepatectomy. Acta Biomater 10:3209–3216

    Article  CAS  PubMed  Google Scholar 

  18. Lin J et al (2015) Use an alginate scaffold-bone marrow stromal cell (BMSC) complex for the treatment of acute liver failure in rats. Int J Clin Exp Med 8:12593–12600

    PubMed  PubMed Central  Google Scholar 

  19. Lin N et al (2010) Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold. Cell Prolif 43:427–434

    Article  CAS  PubMed  Google Scholar 

  20. Dvir-Ginzberg M, Elkayam T, Cohen S (2008) Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J: official publication of the Federation of American Societies for Experimental Biology 22:1440–1449

    Article  CAS  Google Scholar 

  21. Shang Y et al (2014) Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. J Biosci Bioeng 117:99–106

    Article  CAS  PubMed  Google Scholar 

  22. Chien HW, Lai JY, Tsai WB (2014) Galactosylated electrospun membranes for hepatocyte sandwich culture. Colloids Surf B Biointerfaces 116:576–581

    Article  CAS  PubMed  Google Scholar 

  23. Berthiaume F, Moghe PV, Toner M, Yarmush ML (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J: official publication of the Federation of American Societies for Experimental Biology 10:1471–1484

    CAS  Google Scholar 

  24. Melgar-Lesmes P, Balcells M, Edelman ER (2017) Implantation of healthy matrix-embedded endothelial cells rescues dysfunctional endothelium and ischaemic tissue in liver engraftment. Gut 66:1297–1305

    Article  PubMed  Google Scholar 

  25. Ranucci CS, Kumar A, Batra SP, Moghe PV (2000) Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis. Biomaterials 21:783–793

    Article  CAS  PubMed  Google Scholar 

  26. Turner WS et al (2007) Human hepatoblast phenotype maintained by hyaluronan hydrogels. J Biom Mat Res Part B Appl Biom 82:156–168

    Article  Google Scholar 

  27. Katsuda T, Teratani T, Ochiya T, Sakai Y (2010) Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson’s disease model rat. J Biochem 148:281–288

    Article  CAS  PubMed  Google Scholar 

  28. Kaihara S et al (2000) Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J Pediatr Surg 35:1287–1290

    Article  CAS  PubMed  Google Scholar 

  29. Kim SS et al (2000) Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng 6:39–44

    Article  CAS  PubMed  Google Scholar 

  30. Rad AT et al (2014) Conducting scaffolds for liver tissue engineering. J Biomed Mater Res A 102:4169–4181

    Article  PubMed  Google Scholar 

  31. Kanninen LK et al (2016) Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix. Exp Cell Res 341:207–217

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari A et al (2016) Expansion of human hematopoietic stem/progenitor cells on decellularized matrix scaffolds. Curr Protoc Stem Cell Biol 36:1C 15 11–11C 15 16

    Google Scholar 

  33. Baptista PM et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    Article  CAS  PubMed  Google Scholar 

  34. Sabetkish S et al (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A 103:1498–1508

    Article  PubMed  Google Scholar 

  35. Wang Y et al (2015) Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 22:48–61

    Article  CAS  PubMed  Google Scholar 

  36. Buhler NE, Schulze-Osthoff K, Konigsrainer A, Schenk M (2015) Controlled processing of a full-sized porcine liver to a decellularized matrix in 24 h. J Biosci Bioeng 119:609–613

    Article  PubMed  Google Scholar 

  37. Struecker B et al (2015) Porcine liver decellularization under oscillating pressure conditions: a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods 21:303–313

    Article  CAS  PubMed  Google Scholar 

  38. Soto-Gutierrez A et al (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 17:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nari GA et al (2013) Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva 105:138–143

    Article  Google Scholar 

  40. Baptista PM et al (2016) Fluid flow regulation of revascularization and cellular organization in a bioengineered liver platform. Tissue Eng Part C Methods 22:199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mazza G et al (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang R, Emami K, Wu H, Sun W (2010) Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2:045004

    Article  PubMed  Google Scholar 

  43. Faulkner-Jones A et al (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7:044102

    Article  PubMed  Google Scholar 

  44. Gong H, Agustin J, Wootton D, Zhou JG (2014) Biomimetic design and fabrication of porous chitosan-gelatin liver scaffolds with hierarchical channel network. J Mater Sci Mater Med 25:113–120

    Article  PubMed  Google Scholar 

  45. Dickson I (2016) Liver: bioprinted liver lobules. Nat Rev Gastroenterol Hepatol 13:190

    Article  PubMed  Google Scholar 

  46. Skardal A et al (2015) A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 25:24–34

    Article  CAS  PubMed  Google Scholar 

  47. Takebe T et al (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  CAS  PubMed  Google Scholar 

  48. Takebe T et al (2014) Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 9:396–409

    Article  CAS  PubMed  Google Scholar 

  49. Huch M et al (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nantasanti S et al (2015) Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Rep 5:895–907

    Article  CAS  Google Scholar 

  51. Cheng N, Wauthier E, Reid LM (2008) Mature human hepatocytes from ex vivo differentiation of alginate-encapsulated hepatoblasts. Tissue Eng Part A 14:1–7

    Article  CAS  PubMed  Google Scholar 

  52. Faulk DM, Wildemann JD, Badylak SF (2015) Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol 5:69–80

    Article  PubMed  Google Scholar 

  53. Skardal A, Devarasetty M, Soker S, Hall AR (2015) In situ patterned micro 3D liver constructs for parallel toxicology testing in a fluidic device. Biofabrication 7:031001

    Article  PubMed  Google Scholar 

  54. Rawlins MD (2004) Cutting the cost of drug development? Nat Rev Drug Discov 3:360–364

    Article  CAS  PubMed  Google Scholar 

  55. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  56. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499

    Article  CAS  PubMed  Google Scholar 

  57. Rizzetto M, Ciancio A (2012) Epidemiology of hepatitis D. Semin Liver Dis 32:211–219

    Article  PubMed  Google Scholar 

  58. WHO (2016) World Malaria Report 2015. WHO

    Google Scholar 

  59. Smith BW, Adams LA (2011) Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol 7:456–465

    Article  CAS  PubMed  Google Scholar 

  60. Cusi K (2009) Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16:141–149

    Article  PubMed  Google Scholar 

  61. Koppe SWP (2014) Obesity and the liver: nonalcoholic fatty liver disease. Transl Res: the journal of laboratory and clinical medicine 164:312–322

    Article  Google Scholar 

  62. McGuire S (2016) World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr (Bethesda, MD) 7:418–419

    Article  Google Scholar 

  63. LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hewitt NJ et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  CAS  PubMed  Google Scholar 

  65. Terry C, Hughes RD, Mitry RR, Lehec SC, Dhawan A (2007) Cryopreservation-induced nonattachment of human hepatocytes: role of adhesion molecules. Cell Transplant 16:639–647

    Article  PubMed  Google Scholar 

  66. Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT (2014) Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 10:1553–1568

    Article  PubMed  Google Scholar 

  67. Rowe C et al (2010) Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J Proteome Res 9:2658–2668

    Article  CAS  PubMed  Google Scholar 

  68. Bale SS et al (2015) Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 21:413–422

    Article  CAS  PubMed  Google Scholar 

  69. Krause P, Saghatolislam F, Koenig S, Unthan-Fechner K, Probst I (2009) Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim 45:205–212

    Article  CAS  PubMed  Google Scholar 

  70. Ohno M, Motojima K, Okano T, Taniguchi A (2008) Up-regulation of drug-metabolizing enzyme genes in layered co-culture of a human liver cell line and endothelial cells. Tissue Eng Part A 14:1861–1869

    Article  CAS  PubMed  Google Scholar 

  71. Tukov FF et al (2006) Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system. ToxicolIn Vitro : an international journal published in association with BIBRA 20:1488–1499

    Article  CAS  Google Scholar 

  72. Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL (2009) E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transplant 18:1281–1287

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sakai Y, Yamagami S, Nakazawa K (2010) Comparative analysis of gene expression in rat liver tissue and monolayer- and spheroid-cultured hepatocytes. Cells Tissues Organs 191:281–288

    Article  CAS  PubMed  Google Scholar 

  74. Usta OB et al (2015) Microengineered cell and tissue systems for drug screening and toxicology applications: evolution of in-vitro liver technologies. Technology 3:1–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chan TS et al (2013) Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model. Hepato Pac Drug Metab Dispos: the biological fate of chemicals 41:2024–2032

    Article  CAS  Google Scholar 

  76. Schütte J et al (2010) A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. Lab Chip 10:2551–2558

    Article  PubMed  Google Scholar 

  77. Baxter GT (2009) Hurel – an in vivo-surrogate assay platform for cell-based studies. Altern Lab Anim: ATLA 37(Suppl 1):11–18

    CAS  PubMed  Google Scholar 

  78. Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4:1279–1294

    Article  CAS  PubMed  Google Scholar 

  79. Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR (2014) Hepatic organoids for microfluidic drug screening. Lab Chip 14:3290–3299

    Article  CAS  PubMed  Google Scholar 

  80. Vernetti LA et al (2016) A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 241:101–114

    Article  CAS  Google Scholar 

  81. Schmelzer E et al (2010) Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells. Tissue Eng Part A 16:2007–2016

    Article  CAS  PubMed  Google Scholar 

  82. Zeilinger K et al (2011) Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies. Tissue Eng Part C Methods 17:549–556

    Article  CAS  PubMed  Google Scholar 

  83. Uygun BE et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S (2015) Liver-tumor hybrid organoids for modeling tumor growth and drug response in vitro. Ann Biomed Eng 43:2361–2373

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leite SB et al (2016) Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10

    Article  CAS  PubMed  Google Scholar 

  86. Lee J et al (2016) A 3D alcoholic liver disease model on a chip. Integr Biol: quantitative biosciences from nano to macro 8:302–308

    Article  Google Scholar 

  87. Huch M et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bruix J, Reig M, Sherman M (2016) Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 150:835–853

    Article  PubMed  Google Scholar 

  89. Young M, Ordonez L, Clarke AR (2013) What are the best routes to effectively model human colorectal cancer? Mol Oncol 7:178–189

    Article  PubMed  PubMed Central  Google Scholar 

  90. Saito M et al (2006) Reconstruction of liver organoid using a bioreactor. World J Gastroenterol 12:1881–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR (2016) Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–1112

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kosaka T et al (1996) Spheroid cultures of human hepatoblastoma cells (HuH-6 line) and their application for cytotoxicity assay of alcohols. Acta Med Okayama 50:61–66

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Solanas, E. et al. (2018). Tissue Organoids: Liver. In: Soker, S., Skardal, A. (eds) Tumor Organoids. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60511-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60511-1_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60509-8

  • Online ISBN: 978-3-319-60511-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics