Advertisement

Techniques to Produce and Culture Lung Tumor Organoids

  • Cameron Yamanishi
  • Kimberly Jen
  • Shuichi Takayama
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Three-dimensional cell culture formats have been gaining popularity due to their ability to more closely mimic human physiology compared to conventional, two-dimensional culture. These 3D cultures exhibit in vivo-like behaviors, such as cell-cell adhesion, extracellular matrix secretion, and resilience against bacterial, chemical, and radiation insults. Various techniques for 3D organoid culture have been developed to recreate aspects of the lung microenvironment. This chapter examines the history and current applications of 3D lung tumor organoid culture, including Matrigel, hanging drop, magnetic levitation, rotating wall vessels, and non-adherent culture techniques. Each technique provides unique benefits for physiologic behavior, organoid access, and convenience. However, further work is required to advance the development of these systems for future biological discovery and high-throughput drug screening.

Keywords

Lung organoid Hanging drop Rotating wall vessel Non-adherent culture 

References

  1. 1.
    Harrison RG, Greenman MJ, Mall FP, Jackson CM (1907) Observations of the living developing nerve fiber. Anat Rec 1(5):116–128CrossRefGoogle Scholar
  2. 2.
    Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712. doi: 10.1126/science.1064829 CrossRefPubMedGoogle Scholar
  3. 3.
    Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106(25):10290–10295. doi: 10.1073/pnas.0904227106 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eke I, Cordes N (2011) Radiobiology goes 3D: how ECM and cell morphology impact on cell survival after irradiation. Radiother Oncol 99(3):271–278. doi: 10.1016/j.radonc.2011.06.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Carterson AJ, Honer zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ (2005) A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas Aeruginosa pathogenesis. Infect Immun 73(2):1129–1140. doi: 10.1128/IAI.73.2.1129-1140.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15(10):647–664. doi: 10.1038/nrm3873 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nadkarni RR, Abed S, Draper JS (2016) Organoids as a model system for studying human lung development and disease. Biochem Biophys Res Commun 473(3):675–682. doi: 10.1016/j.bbrc.2015.12.091 CrossRefPubMedGoogle Scholar
  8. 8.
    Konar D, Devarasetty M, Yildiz DV, Atala A, Murphy SV (2016) Lung-on-a-chip technologies for disease modeling and drug development. Biomed Eng Comput Biol 7(Suppl 1):17–27. doi: 10.4137/BECB.S34252 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15(5):378–386. doi: 10.1016/j.semcancer.2005.05.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25(2):312–318CrossRefPubMedGoogle Scholar
  11. 11.
    Kleinman HK, McGarvey ML, Hassell JR, Martin GR (1983) Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry 22(21):4969–4974CrossRefPubMedGoogle Scholar
  12. 12.
    Tung PS, Choi AH, Fritz IB (1988) Topography and behavior of Sertoli cells in sparse culture during the transitional remodeling phase. Anat Rec 220(1):11–21. doi: 10.1002/ar.1092200103 CrossRefPubMedGoogle Scholar
  13. 13.
    Rinehart CA Jr, Lyn-Cook BD, Kaufman DG (1988) Gland formation from human endometrial epithelial cells in vitro. In Vitro Cell Dev Biol 24(10):1037–1041CrossRefPubMedGoogle Scholar
  14. 14.
    Shannon JM, Mason RJ, Jennings SD (1987) Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochim Biophys Acta 931(2):143–156CrossRefPubMedGoogle Scholar
  15. 15.
    Rannels SR, Rannels DE (1989) The type II pneumocyte as a model of lung cell interaction with the extracellular matrix. J Mol Cell Cardiol 21(Suppl 1):151–159CrossRefPubMedGoogle Scholar
  16. 16.
    Shannon JM, Emrie PA, Fisher JH, Kuroki Y, Jennings SD, Mason RJ (1990) Effect of a reconstituted basement membrane on expression of surfactant apoproteins in cultured adult rat alveolar type II cells. Am J Respir Cell Mol Biol 2(2):183–192CrossRefPubMedGoogle Scholar
  17. 17.
    Paine R, Ben-Ze’ev A, Farmer SR, Brody JS (1988) The pattern of cytokeratin synthesis is a marker of type 2 cell differentiation in adult and maturing fetal lung alveolar cells. Dev Biol 129(2):505–515CrossRefPubMedGoogle Scholar
  18. 18.
    Paine R 3rd, Christensen P, Toews GB, Simon RH (1994) Regulation of alveolar epithelial cell ICAM-1 expression by cell shape and cell-cell interactions. Am J Phys 266(4 Pt 1):L476–L484Google Scholar
  19. 19.
    Kawada H, Shannon JM, Mason RJ (1990) Improved maintenance of adult rat alveolar type II cell differentiation in vitro: effect of serum-free, hormonally defined medium and a reconstituted basement membrane. Am J Respir Cell Mol Biol 3(1):33–43. doi: 10.1165/ajrcmb/3.1.33 CrossRefPubMedGoogle Scholar
  20. 20.
    Saiki I, Murata J, Makabe T, Matsumoto Y, Ohdate Y, Kawase Y, Taguchi Y, Shimojo T, Kimizuka F, Kato I et al (1990) Inhibition of lung metastasis by synthetic and recombinant fragments of human fibronectin with functional domains. Jpn J Cancer Res 81(10):1003–1011CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME et al (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150(3):534–544. doi: 10.1002/jcp.1041500314 CrossRefPubMedGoogle Scholar
  22. 22.
    Fridman R, Benton G, Aranoutova I, Kleinman HK, Bonfil RD (2012) Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc 7(6):1138–1144. doi: 10.1038/nprot.2012.053 CrossRefPubMedGoogle Scholar
  23. 23.
    Gotoh S, Ito I, Nagasaki T, Yamamoto Y, Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, Mae S, Toyoda T, Sato-Otsubo A, Ogawa S, Osafune K, Mishima M (2014) Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep 3(3):394–403. doi: 10.1016/j.stemcr.2014.07.005 CrossRefGoogle Scholar
  24. 24.
    Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR (2015) In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4. doi: 10.7554/eLife.05098
  25. 25.
    Delgado O, Kaisani AA, Spinola M, Xie XJ, Batten KG, Minna JD, Wright WE, Shay JW (2011) Multipotent capacity of immortalized human bronchial epithelial cells. Plos One 6 (7). doi:ARTN e22023  10.1371/journal.pone.0022023
  26. 26.
    Franzdottir SR, Axelsson IT, Arason AJ, Baldursson O, Gudjonsson T, Magnusson MK (2010) Airway branching morphogenesis in three dimensional culture. Respir Res 11:162. doi: 10.1186/1465-9921-11-162 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wu X, Peters-Hall JR, Bose S, Pena MT, Rose MC (2011) Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix. Am J Respir Cell Mol Biol 44(6):914–921. doi: 10.1165/rcmb.2009-0329OC CrossRefPubMedGoogle Scholar
  28. 28.
    El-Ashmawy M, Coquelin M, Luitel K, Batten K, Shay JW (2016) Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells. Sci Rep 6:31669. doi: 10.1038/srep31669 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fessart D, Begueret H, Delom F (2013) Three-dimensional culture model to distinguish normal from malignant human bronchial epithelial cells. Eur Respir J 42(5):1345–1356. doi: 10.1183/09031936.00118812 CrossRefPubMedGoogle Scholar
  30. 30.
    Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890. doi: 10.1002/pmic.200900758 CrossRefPubMedGoogle Scholar
  31. 31.
    Lortat-Jacob H, Kleinman HK, Grimaud JA (1991) High-affinity binding of interferon-gamma to a basement membrane complex (matrigel). J Clin Invest 87(3):878–883. doi: 10.1172/JCI115093 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Akashi T, Minami J, Ishige Y, Eishi Y, Takizawa T, Koike M, Yanagishita M (2005) Basement membrane matrix modifies cytokine interactions between lung cancer cells and fibroblasts. Pathobiology 72(5):250–259. doi: 10.1159/000089419 CrossRefPubMedGoogle Scholar
  33. 33.
    Dolega ME, Abeille F, Picollet-D’hahan N, Gidrol X (2015) Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development. Biomaterials 52:347–357. doi: 10.1016/j.biomaterials.2015.02.042 CrossRefPubMedGoogle Scholar
  34. 34.
    Ito A, Hayashida M, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004) Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng 10(5–6):873–880. doi: 10.1089/1076327041348446 CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Yang P, Xu H, Qian A, Hu L, Shang P (2009) Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics 30(6):446–453. doi: 10.1002/bem.20501 CrossRefPubMedGoogle Scholar
  36. 36.
    Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM (2005) Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 280(39):33588–33598. doi: 10.1074/jbc.M507621200 CrossRefPubMedGoogle Scholar
  37. 37.
    Ghosh S, Kumar SR, Puri IK, Elankumaran S (2016) Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue. Cell Prolif 49(1):134–144. doi: 10.1111/cpr.12234 CrossRefPubMedGoogle Scholar
  38. 38.
    Tseng H, Gage JA, Raphael RM, Moore RH, Killian TC, Grande-Allen KJ, Souza GR (2013) Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Eng Part C Methods 19(9):665–675. doi: 10.1089/ten.TEC.2012.0157 CrossRefPubMedGoogle Scholar
  39. 39.
    Daquinag AC, Souza GR, Kolonin MG (2013) Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods 19(5):336–344. doi: 10.1089/ten.TEC.2012.0198 CrossRefPubMedGoogle Scholar
  40. 40.
    Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949. doi: 10.1038/nprot.2013.125 CrossRefPubMedGoogle Scholar
  41. 41.
    Goodwin TJ, Jessup JM, Wolf DA (1992) Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell Dev Biol 28A(1):47–60CrossRefPubMedGoogle Scholar
  42. 42.
    Vertrees RA, McCarthy M, Solley T, Popov VL, Roaten J, Pauley M, Wen XD, Goodwin TJ (2009) Development of a three-dimensional model of lung cancer using cultured transformed lung cells. Cancer Biol Ther 8(4):356–365. doi: 10.4161/cbt.8.4.7432 CrossRefPubMedGoogle Scholar
  43. 43.
    Wilkinson DC, Alva-Ornelas JA, Sucre JM, Vijayaraj P, Durra A, Richardson W, Jonas SJ, Paul MK, Karumbayaram S, Dunn B, Gomperts BN (2016) Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. doi: 10.5966/sctm.2016-0192
  44. 44.
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G (2006) Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816. doi: 10.1164/rccm.200602-163OC CrossRefPubMedGoogle Scholar
  45. 45.
    Selman M, King TE, Pardo A, American Thoracic Society, European Respiratory Society, American College of Chest Physicians (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134(2):136–151CrossRefPubMedGoogle Scholar
  46. 46.
    Todd NW, Atamas SP, Luzina IG, Galvin JR (2015) Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis. Expert Rev Respir Med 9(4):411–418. doi: 10.1586/17476348.2015.1067609 CrossRefPubMedGoogle Scholar
  47. 47.
    Katzenstein AL (1985) Pathogenesis of “fibrosis” in interstitial pneumonia: an electron microscopic study. Hum Pathol 16(10):1015–1024CrossRefPubMedGoogle Scholar
  48. 48.
    Tittsler RP, Sandholzer LA (1936) The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31(6):575PubMedPubMedCentralGoogle Scholar
  49. 49.
    Spring D (1931) Morphologic variation within the same species of dermatophyte as observed in hanging-drop cultures. Arch Dermatol Syphilol 23(6):1076–1086CrossRefGoogle Scholar
  50. 50.
    Archibald RG (1926) A case of sickle cell anaemia in the Sudan. Trans R Soc Trop Med Hyg 19(7):389–393CrossRefGoogle Scholar
  51. 51.
    Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83(2):173–180. doi: 10.1002/bit.10655 CrossRefPubMedGoogle Scholar
  52. 52.
    Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478. doi: 10.1039/c0an00609b CrossRefPubMedGoogle Scholar
  53. 53.
    Drewitz M, Caminada D, Moritz W, Lichtenberg J, Kasper C, Kelm JM (2011) Verfahren zur automatisierten Tropfenbildung für die Massenproduktion von organotypischen Mikrogeweben novel production technology to automate the generation of hanging drops for mass production of organotypic microtissues. Chemie Ingenieur Technik 83(12):2170–2176. doi: 10.1002/cite.201100063 CrossRefGoogle Scholar
  54. 54.
    Amann A, Zwierzina M, Gamerith G, Bitsche M, Huber JM, Vogel GF, Blumer M, Koeck S, Pechriggl EJ, Kelm JM, Hilbe W, Zwierzina H (2014) Development of an innovative 3D cell culture system to study tumour–stroma interactions in non-small cell lung cancer cells. PLoS One 9(3):e92511. doi: 10.1371/journal.pone.0092511 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hsiao AY, Tung YC, Kuo CH, Mosadegh B, Bedenis R, Pienta KJ, Takayama S (2012) Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14(2):313–323. doi: 10.1007/s10544-011-9608-5 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA (2012) Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10. doi:Artn 29  10.1186/1741-7007-10-29
  57. 57.
    Li Q, Chen CY, Kapadia A, Zhou QO, Harper MK, Schaack J, Labarbera DV (2011) 3D models of epithelial-Mesenchymal transition in breast cancer metastasis: high-throughput screening assay development, validation, and pilot screen. J Biomol Screen 16(2):141–154. doi: 10.1177/1087057110392995 CrossRefPubMedGoogle Scholar
  58. 58.
    Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, Kuroda Y, Kiyono Y, Yoshii H, Furukawa T, Asai T, Okazawa H, Gelovani JG, Fujibayashi Y (2011) The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 32(26):6052–6058. doi: 10.1016/j.biomaterials.2011.04.076 CrossRefPubMedGoogle Scholar
  59. 59.
    Barrera-Rodriguez R, Fuentes JM (2015) Multidrug resistance characterization in multicellular tumour spheroids from two human lung cancer cell lines. Cancer Cell Int 15. doi:ARTN 47  10.1186/s12935-015-0200-6
  60. 60.
    Liu FF, Peng C, Escher BI, Fantino E, Giles C, Were S, Duffy L, Ng JC (2013) Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures. J Hazard Mater 261:701–710. doi: 10.1016/j.jhazmat.2013.01.027 CrossRefPubMedGoogle Scholar
  61. 61.
    Henry E, Cores J, Hensley MT, Anthony S, Vandergriff A, de Andrade JB, Allen T, Caranasos TG, Lobo LJ, Cheng K (2015) Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with Bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med 4(11):1265–1274. doi: 10.5966/sctm.2015-0062 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, Gage FH, Khanna A, Verma IM (2014) Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells. Proc Natl Acad Sci U S A 111(17):E1723–E1730. doi: 10.1073/pnas.1403470111 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Cameron Yamanishi
    • 1
  • Kimberly Jen
    • 2
  • Shuichi Takayama
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Unit for Laboratory Animal Medicine (ULAM)University of MichiganAnn ArborUSA
  3. 3.Department of Biomedical Engineering, Macromolecular Science and Engineering, Biointerfaces Institute, MCIRCCUniversity of MichiganAnn ArborUSA

Personalised recommendations