Skip to main content

Tailoring Light-Matter Interaction for Quantification of Biological and Molecular Layers

  • Chapter
  • First Online:
  • 341 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The silicon electro-photonic platform was introduced in Chap. 4, while its capabilities for monitoring electrochemical reactions in situ and site-selective functionalisation were presented in Chap. 5. By tailoring the light-matter interaction, it is also possible to create a sensor with the potential to enable detailed quantification of biological and molecular layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. X. Fan, Y. Sun, Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399, 205–211 (2011)

    Google Scholar 

  2. J. Homola, S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators 54(54), 3–15 (1999)

    Google Scholar 

  3. Yuanjin Zhao, Gu Xiangwei Zhao, Zhongze, Photonic crystals in bioassays. Adv. Funct. Mater. 20(18), 2970–2988 (2010)

    Google Scholar 

  4. R.G. Heideman, P.V. Lambeck, Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated machzehnder interferometer system. Sens. Actuators B Chem. 61 (13),100–127 (1999), http://www.sciencedirect.com/science/article/pii/S092540059900283X

  5. S.E. Radford, Protein folding: progress made and promises ahead. Trends Biochem. Sci. 25(12), 611–618 (2000)

    Article  Google Scholar 

  6. N. J. Freeman, G. H. Cross, M. J. Swann. Dual Polarization Interferometry: A Real-Time Optical Technique for Measuring (Bio)molecular Orientation, Structure and Function at the Solid/Liquid Interface. Wiley (2008)

    Google Scholar 

  7. S. Werquin, J.W. Hoste, P. Bienstman, Conformational analysis of proteins with a dual polarisation silicon microring. Opt. Express 22(3), 2807–2820 (2014)

    Article  ADS  Google Scholar 

  8. A. N. Parikha, D. L. Allarac, Handbook of Biofunctional Surfaces. Pan Stanford Publishing (2013)

    Google Scholar 

  9. K. Okamoto, Fundamentals of Optical Waveguides. Elsevier (2006)

    Google Scholar 

  10. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar, Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012)

    Article  Google Scholar 

  11. K. De Vos, Label-free silicon photonics biosensor platform with microring resonators. PhD thesis, University of Ghent (2010)

    Google Scholar 

  12. S. Johnson, D. Evans, S. Laurenson, D. Paul, A.G. Davies, P. Ko Ferrigno, C. Wlti, Surface-immobilized peptide aptamers as probe molecules for protein detection. Anal. Chem. 80, 978–983 (2008)

    Article  Google Scholar 

  13. S.H. Brorson, Bovine serum albumin (BSA) as a reagent against non-specific immunogold labeling on lrwhite and epoxy resin. Micron 28, 189–195 (1997)

    Article  Google Scholar 

  14. D.C. Carter, J.X. Ho, Structure of serum albumin. Adv. Protein Chem. 45, 153–203 (1994)

    Article  Google Scholar 

  15. M.J. Swann, G.H. Cross, A. Reeves, S. Brand, N.J. Freeman, L.L. Peel, J.R. Lu, Real time, high resolution studies of protein adsorption and structure at the solidliquid interface using dual polarization interferometry. J. Phys. Condens. Matter 16(26), S2493 (2004)

    Article  Google Scholar 

  16. J-W. Hoste, Dual Polarization Ring Resonator for Conformational Analysis of Molecular-sized Layers. PhD thesis, Universiteit Gent (2015)

    Google Scholar 

  17. Vincent S. Stoll, John S. Blanchard. [4] buffers: Principles and practice. In: Murray P. Deutscher (ed.), Guide to Protein Purification, vol. 182 of Methods in Enzymology, pp. 24–38. Academic Press (1990)

    Google Scholar 

  18. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)

    Article  Google Scholar 

  19. R. Woodman, M. Crawford, P. K. Ferrigno, Peptide aptamers: Tools for biology and drug discovery. 2(1), 72–79 (2003)

    Google Scholar 

  20. X. Luo, J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev., 5944–5962 (2013)

    Google Scholar 

  21. D. Chandler, Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    Article  ADS  Google Scholar 

  22. R.G. Berendsen, H.G.J.M. Janssen, T.J.J. Binnendijk, C.W. Hilbers, G.A. van der Marel, C.A.G. Haasnoot, kinetics and thermodynamics of dna hairpin fragments in solution. J. Biomol. Struct. Dyn. 1(1), 115–129 (1983)

    Article  Google Scholar 

  23. J. Bath, A. Tyrrell, M. Costa, A clocked finite state machine built from DNA. Chem. Commun. 49, 237–239 (2013)

    Article  Google Scholar 

  24. R. Sha, Omabegho, To. N. C. Seeman. A bipedal dna brownian motor with coordinated legs. Science 324(5923), 67–71 (2009). 10.1126/science.1170336

    Google Scholar 

  25. J. Bath, S. J. Green, A. J. Turberfield, Coordinated chemomechanical cycles: A mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008)

    Google Scholar 

  26. K. W. Plaxco, C. Fan, A. J. Heeger. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Nat. Acad. Sci. 100(16), 9134–9137 (2003)

    Google Scholar 

  27. D. Lubrich, S.J. Green, A.J. Turberfield, DNA hairpins: Fuel for autonomous DNA devices. Biophys. J. 91(8), 2966–2975 (2006)

    Article  Google Scholar 

  28. J.S. Bois, B.R. Wolfe, M.B. Pierce, A.R. Khan, R.M. Dirks, J.N. Zadeh, C.D. Steenberg, N.A. Pierce, Nupack: Analysis and design of nucleic acid systems. J. Comput. Chem. 32(1), 170–173 (2011)

    Article  Google Scholar 

  29. W. N. Hunter, G. Kneale, T. Brown, O. Kennard. Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc. Natl. Acad. Sci. USA, 83(8), 2402–2406 (1986)

    Google Scholar 

  30. A.C. Gustafsson, F. Sterky, P. Nyrn, M. Uhln, A. Ahmadian, Baback Gharizadeh and J. Lundeberg. Single-nucleotide polymorphism analysis by pyrosequencing. Anal. Biochem. 280(1), 103–110 (2000)

    Article  Google Scholar 

  31. G. Wang, Q. Chi, J. Jiang, The persistence length and length per base of single-stranded DNA obtained from fluorescence correlation spectroscopy measurements using mean field theory. Physica A 392(5), 1072–1079 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. D. Langford, R. Bonand, E. Koutsoumpeli, J. Murray, S. Johnson, Probing molecular interactions with methylene blue derivatized self-assembled monolayers. Sens. BioSens. Res., pp. 1–6 (2015)

    Google Scholar 

  33. Z. Zhang F. Yang J. Wang, X. Xu and Xi. Yang. Real-time study of genomic dna structural changes upon interaction with small molecules using dual-polarization interferometry. Anal. Chem. 81(12), 4914–4921 (2009)

    Google Scholar 

  34. T.A. Jowitt, J. Ylstalo, P. Coffey, R.S. Meadows, L. Ala-Kokko, D.J. Thornton, M. Fresquet, M.D. Briggs, Structural and functional characterization of recombinant matrilin-3 a-domain and implications for human genetic bone diseases. J. Biol. Chem. 282(48), 34634–34643 (2007)

    Article  Google Scholar 

  35. T.A. Waigh, F. Schedin, P.D. Coffey, M.J. Swann, J.R. Lu, Multiple path length dual polarization interferometry. Opt. Express 17(13), 10959–10969 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Juan Colás .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Juan Colás, J. (2017). Tailoring Light-Matter Interaction for Quantification of Biological and Molecular Layers. In: Dual-Mode Electro-photonic Silicon Biosensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60501-2_6

Download citation

Publish with us

Policies and ethics