Advertisement

Visual Feedback for Grasping in Virtual Reality Environments for an Interface to Instruct Digital Human Models

  • Andreas GeigerEmail author
  • Imke Bewersdorf
  • Elisabeth Brandenburg
  • Rainer Stark
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 607)

Abstract

Digital Human Models (DHMs) are widely used in big industry whereas they are not used in small and medium-sized enterprises. One of the main reasons is the complexity and usability. Engineers need a notable amount of training to be able to use DHM software. The authors suggest a new interactive Virtual Reality (VR) interface to instruct DHMs. Within this VR environment, engineers can naturally interact with virtual objects using their hands. These interactions are used as an instruction for DHMs. To support the software user best it is necessary to provide feedback to be able to grasp the virtual object most efficiently. In this work we present a user study in which we investigate which visual feedback leads to the best performance for grasping virtual objects. The results show that users are supported most when additional Hand Color Feedback is provided in the VR environment.

Keywords

Digital Human Model Virtual interaction Leap Motion Usability Visual feedback Virtual Reality Ergonomics Virtual grasping Human factors EMMA-CC 

Notes

Acknowledgment

We want to thank the Fraunhofer ZV for funding the EMMA-CC project in which this work was accrued. Furthermore, the presented work would not have been possible without additional help by Antoine Sublet who implemented the study design in Unity.

References

  1. 1.
    Wischniewski, S.: Digitale Ergonomie 2025. Trends und Strategien zur Gestaltung gebrauchstauglicher Produkte und sicherer, gesunder und wettbewerbsfähiger sozio-technischer Arbeitssysteme, Forschung Projekt F 2313, (Abschlussbericht). Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund, Berlin, Dresden (2013)Google Scholar
  2. 2.
    Geiger, A., Brandenburg, E., Stark, R.: Instruction of digital human models through interaction in immersive virtual environments. In: Stephanidis, C. (ed.) HCI 2016. CCIS, vol. 617, pp. 503–507. Springer, Cham (2016). doi: 10.1007/978-3-319-40548-3_83 CrossRefGoogle Scholar
  3. 3.
    VDC Fellbach: Digitale Menschmodelle. Ergebnisse eines World Cafés in Stuttgart am 9.2.2017 (2017). Accessed 2 Mar 2017Google Scholar
  4. 4.
    Brandenburg, E., Geiger, A., Rothenburg, U., Stark, R.: Anforderungsanalyse einen Montagesimulationssoftware zwecks Aufwandsminimierung manueller Konfigurationsaufgaben. In: VDI Wissensforum (ed.) Userware 2016. Mensch-Technik-Interaktion im Industrie 4.0 Zeitalter, pp. 15–23. VDI-Verlag, Düsseldorf (2016)Google Scholar
  5. 5.
    Brolin, E., Högberg, D., Hanson, L.: Design of a digital human modelling module for consideration of antropometric diversity. In: Duffy, V.G. (ed.) Advances in Applied Digital Human Modeling and Simulation. Proceedings of the AHFE 2016 International Conference on Digital Human Modeling and Simulation, July 27–31, 2016, Walt Disney World®, Florida, USA. Advances in Intelligent Systems and Computing, vol. 481, pp. 114–120. Springer International Publishing, Cham (2017)Google Scholar
  6. 6.
    Gläser, D., Fritzsche, L., Bauer, S., Leidholdt, W.: The quest to validate human motion for digital ergonomic assessment - biomechnaical studies to improve the human-like behavior of the human model “EMA”. In: Duffy, V.G. (ed.) Advances in Applied Digital Human Modeling and Simulation. Proceedings of the AHFE 2016 International Conference on Digital Human Modeling and Simulation, July 27–31, 2016, Walt Disney World®, Florida, USA. Advances in Intelligent Systems and Computing, vol. 481, pp. 19–26. Springer International Publishing, Cham (2017)Google Scholar
  7. 7.
    Ergonomie der Mensch-System-Interaktion Teil 11: Anforderungen an die Gebrauchstauglichkeit – Leitsätze. Deutsches Institut für Normung e.V., Berlin (9241-11) (1999)Google Scholar
  8. 8.
    Ergonomie der Mensch-System-Interaktion Teil 110: Grundsätze der Dialoggestaltung, Berlin(9241-110) (2008)Google Scholar
  9. 9.
    Holz, D., Ullrich, S., Wolter, M., Kuhlen, T.: Multi-contact grasp interaction for virtual environments. J. Virtual Reality Broadcast. 5(7), 1860–2037 (2008)Google Scholar
  10. 10.
    Borst, C.W., Indugula, A.P.: A spring model for whole-hand virtual grasping. Presence Teleoper. Virtual Environ. 15(1), 47–61 (2006)CrossRefGoogle Scholar
  11. 11.
    Bowman, D.A.: 3D User Interfaces. Theory and Practice. Addison-Wesley, Boston (2005)Google Scholar
  12. 12.
    Prachyabrued, M., Borst, C.W.: Visual feedback for virtual grasping. In: Lécuyer, A., Lindeman, R., Steinicke, F. (eds.) Proceedings of IEEE Symposium on 3D User Interface 2014, Minneapolis, Minnesota, USA, 29–30 March, 2014, pp. 19–26. IEEE, Piscataway, NJ (2014)Google Scholar
  13. 13.
    Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37(3), 121–136 (2013)CrossRefGoogle Scholar
  14. 14.
    Laugwitz, B., Schrepp, M., Theo, H.: Konstruktion eines fragebogens zur messung der user experience von softwareprodukten. In: Heinecke, A.M., Paul, H. (eds.) Mensch und Computer 2006. Mensch und Computer im StrukturWandel, pp. 125–134. De Gruyter, München (2006)Google Scholar
  15. 15.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Human Mental Workload, vol. 52. Advances in Psychology, pp. 139–183. Elsevier (1988)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andreas Geiger
    • 1
    Email author
  • Imke Bewersdorf
    • 1
  • Elisabeth Brandenburg
    • 1
  • Rainer Stark
    • 1
  1. 1.Fraunhofer Institute for Production Systems and Design Technology IPKBerlinGermany

Personalised recommendations