Guidelines for Managing Complex Scenarios for Optimization of Infrastructure Transformations

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 600)


Infrastructure transformation strategies in rural areas are influenced by a lot of diverse aspects such as climatic or demographic changes. The optimization of these strategies is based on scenarios, which are basically containers holding input data. This paper presents recommendations for the design of a scenario assistant system to generate complex, but complete, valid and consistent scenarios in an intuitive and simple way for experts and non-experts in the water supply and waste water disposal domain. Requirements were collected in several workshops with domain experts and end users. The concept recommendations have been derived to improve and speed up the development process of future scenario management assistants.


Scenario generation Usability Design guidelines 



The work in this paper has been funded by the German Federal Ministry of Education and Research (BMBF, project “SinOptiKom”, 033W009A).


  1. 1.
    Heinecke, A., Schwager, M.: Die Szenario-Technik als Instrument der strategischen Planung. Berichte des Instituts für Wirtschaftswissenschaften der TU -Braunschweig. Hochschule Braunschweig, Braunschweig (1995)Google Scholar
  2. 2.
    Baron, S., Kaufmann Alves, I., Schmitt, T.G., Schöffel, S., Schwank, J.: Cross-sectoral optimization and visualization of transformation processes in urban water infrastructures in rural areas. Water Sci. Technol. 72(10), 1730–1738 (2015)CrossRefGoogle Scholar
  3. 3.
    Schöffel, S., Schwank, J., Ebert, A.: Analyzing time-dependent infrastructure optimization based on geographical-information system technologies. In: 4th International Conference on Human Factors, Sustainable Urban Planning and Infrastructure, Los Angeles, CA (2017)Google Scholar
  4. 4.
    Worreschk, S., Kaufmann Alves, I., Schmitt, T.G., Thielen, C.: Optimization of transformation processes of drainage systems in rural areas. In: Proceedings of the 13th International Conference on Urban Drainage (ICUD 2014), Sarawak, Malaysia (2014)Google Scholar
  5. 5.
    Schmitt, T., Worreschk, S., Kaufmann Alves, I., Herold, F., Thielen, C.: An optimization and decision support tool for long-term strategies in the transformation of urban water infrastructure. In: International Conference on Hydroinformatics (2014)Google Scholar
  6. 6.
    Pensa, S., Masala, E., Lami, I.M.: Supporting planning processes by the use of dynamic visualisation. In: Geertman, S., Toppen, F., Stillwell, J. (eds.) Planning Support Systems for Sustainable Urban Development, pp. 451–467. Springer, Heidelberg (2013). inbookCrossRefGoogle Scholar
  7. 7.
    Stevens, D., Dragicevic, S., Rothley, K.: iCity: a GIS-CA modelling tool for urban planning and decision making. Environ. Model Softw. 22(6), 761–773 (2007)CrossRefGoogle Scholar
  8. 8.
    Kulawiak, M., Lubniewski, Z.: SafeCity — a GIS-based tool profiled for supporting decision making in urban development and infrastructure protection. Technol. Forecast. Soc. Chang. 89, 174–187 (2014)CrossRefGoogle Scholar
  9. 9.
    Maeda, J.: The Laws of Simplicity. The MIT Press, Cambridge (2006)Google Scholar
  10. 10.
    Lemberger, P., Morel, M.: Managing Complexity of Information Systems: The Value of Simplicity. ISTE, London (2011)Google Scholar
  11. 11.
    Holub, I., Bruckner, T.: Measuring complexity of SAP systems. Complex Syst. Inf. Model. Q. 8, 60–67 (2016)Google Scholar
  12. 12.
    Lissack, M.: Don’t be addicted: the oft-overlooked dangers of simplification. She Ji J. Des. Econ. Innov. 2(1), 29–45 (2016)CrossRefGoogle Scholar
  13. 13.
  14. 14.
  15. 15.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6), 381–391 (1954)CrossRefGoogle Scholar
  16. 16.
    MacKenzie, I.S., Ware, C.: Lag as a determinant of human performance in interactive systems. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on Human Factors in Computing Systems (CHI 1993), pp. 488–493. ACM, New York (1993)Google Scholar
  17. 17.
    Wertheimer, M.: Laws of organization in perceptual forms. In: Ellis, W.D. (ed.) A Source Book of Gestalt Psychology, pp. 71–88. Kegan Paul, Trench, Trubner & Company, London (1938). xiv, 403 pp.CrossRefGoogle Scholar
  18. 18.
    Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt II. Psychol. Forsch. 4, 301–350 (1923)CrossRefGoogle Scholar
  19. 19.
    Gong, J., Tarasewich, P.: Guidelines for handheld mobile device interface design. In: Proceedings of DSI 2004 Annual Meeting, pp. 3751–3756 (2004)Google Scholar
  20. 20.
    Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley Longman Publishing Co., Inc., Boston (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of KaiserslauternKaiserslauternGermany

Personalised recommendations