Advertisement

On a Fog Computing Platform Built on ARM Architectures by Docker Container Technology

  • Andreas Eiermann
  • Mathias Renner
  • Marcel Großmann
  • Udo R. Krieger
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 717)

Abstract

Fog computing constitutes currently a challenging effort to establish the concepts and services of cloud computing at the edge of converging wireless networks and wired high-speed backbones. We discuss the concepts of our fog computing platform HCL-BaFog. It is built on top of Hypriot Cluster Lab (HCL) which has been developed by the Hypriot Pirate Crew in recent years based on single board computers with an ARM architecture. It uses LINUX container technology as underlying open source platform that has been established by means of the rapidly evolving framework Docker. We present the design principles of our fog computing platform and discuss its different software components. To create clusters of fog cells subject to high-availability requirements and to provide failsafe data processing, we further summarize some performance results on the integration of the orchestration tools Docker Swarm Mode and Kubernetes on HCL and draw some conclusions regarding their suitability for fog computing.

Keywords

Fog computing Hypriot Cluster Lab ARM architecture Container virtualization Docker Swarm Mode Kubernetes High-availability 

Notes

Acknowledgment

The authors are very much indebted to those members of the Hypriot Pirate team outside the University of Bamberg, including Govinda Fichtner, Dieter Reuter, and Stefan Scherer, that has developed the HCL platform during spare time and that guarantees its overwhelming success by enormous personal efforts.

References

  1. 1.
    Aazam, M., Huh, E.-N.: Fog computing and smart gateway based communication for cloud of things. In: International Conference on Future Internet of Things and Cloud (FiCloud) 2014, pp. 464–470, August 2014Google Scholar
  2. 2.
    Abrahamsson, P., et al.: Affordable and energy-efficient cloud computing clusters: the Bolzano Raspberry Pi cloud cluster experiment. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom) 2013, vol. 2, pp. 170–175. IEEE (2013)Google Scholar
  3. 3.
    Al-Fuqaha, A., et al.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015). (Fourth Quarter)CrossRefGoogle Scholar
  4. 4.
    Atzori, L., et al.: Internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Docker: What Is Docker? Comparing Containers and Virtual Machines. https://www.docker.com/what-docker#/VM. Accessed 04 Oct 2016
  6. 6.
    GCHQ: GCHQ’s Raspberry Pi ‘Bramble’ - exploring the future of computing, 11. https://www.gchq.gov.uk/news-article/gchqs-raspberry-pi-bramble-exploring-future-computing. Accessed 14 Oct 2016
  7. 7.
    Goasguen, S.: Running Kubernetes on a Raspberry Pi, 16. http://sebgoa.blogspot.de/2015/09/running-kubernetes-on-raspberry-pi.html. Accessed 14 Oct 2016
  8. 8.
    Großmann, M., Eiermann, A., Renner, M.: Hypriot cluster lab: an ARM-powered cloud solution utilizing docker. In: 23rd International Conference on Telecommunications (ICT 2016), pp. 16–18, Thessaloniki, Greece, May 2016Google Scholar
  9. 9.
    Großmann, M., Eiermann, A.: Automated establishment of a secured network for providing a distributed container cluster. In: 28th International Teletraffic Congress (ITC28), 13–15 September 2016, Würzburg, Germany (2016)Google Scholar
  10. 10.
    Gubbi, J., et al.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29, 1645–1660 (2013)CrossRefGoogle Scholar
  11. 11.
    Holla, S.: Orchestrating Docker. Packt Publishing Ltd., Birmingham (2015)Google Scholar
  12. 12.
    Huß, R.: A Raspberry Pi 3 Kubernetes Cluster, 27. https://ro14nd.de/kubernetes-on-raspberry-pi3. Accessed 14 Oct 2016
  13. 13.
    Kaewkasi, C.: Docker Swarm Mode, 2016. https://medium.com/@chanwit/docker-swarm-mode-fde1e3e392ae#p7w8sxhac. Accessed 14 Oct 2016
  14. 14.
    Kiepert, J.: Creating a Raspberry Pi-based Beowulf Cluster, Boise State University, 22 May 2013. Accessed 14 Oct 2016Google Scholar
  15. 15.
    Mogren, L.: Kubernetes on ARM (2016). Accessed 14 Oct 2016Google Scholar
  16. 16.
    Nissen, K., Jensen, M.: Kubecloud - a small-scale tangible cloud computing environment. Master’s thesis, Aarhus University - Department of Engineering, 6 June (2016). http://kubecloud.io/files/kubecloud.pdf
  17. 17.
    Nissen, K., Jensen, M.: Setting up a Kubernetes on ARM cluster, 13. http://kubecloud.io/kubernetes-on-arm-cluster/. Accessed 14 Oct 2016
  18. 18.
    Skarlat, O., et al.: Resource provisioning for IoT services in the fog. In: 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA 2016), 4–6 November 2016. Macau, China (2016)Google Scholar
  19. 19.
    Tso, F.P., et al.: The Glasgow Raspberry Pi Cloud: a scale model for cloud computing infrastructures. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems (ICDCS) Workshops, IEEE, pp. 108–112 (2013)Google Scholar
  20. 20.
    University of Southampton. Southampton engineers a Raspberry Pi Supercomputer, 11 September 2012. https://www.southampton.ac.uk/sjc/raspberrypi/Raspberry_Pi_supercomputer_11Sept2012.pdf. Accessed 14 Oct 2016
  21. 21.
    White, D.: Building a Raspberry Pi cloud (2014). Accessed 14 Oct 2016Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andreas Eiermann
    • 1
  • Mathias Renner
    • 1
  • Marcel Großmann
    • 1
  • Udo R. Krieger
    • 1
  1. 1.Fakultät WIAI, Otto-Friedrich-UniversitätBambergGermany

Personalised recommendations