From Meaningful Orderings in the Web of Data to Multi-level Pattern Structures

  • Quentin BrabantEmail author
  • Miguel Couceiro
  • Amedeo Napoli
  • Justine Reynaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10352)


We define a pattern structure whose objects are elements of a supporting ontology. In this framework, descriptions constitute trees, made of triples subject-predicate-object, and for which we provide a meaningful similarity operator. The specificity of the descriptions depends on a hyperparameter corresponding to their depth. This formalism is compatible with ontologies formulated in the language of RDF and RDFS and aims to set up a framework based on pattern structures for knowledge discovery in the web of data.


Formal concept analysis Pattern structure Ontology Knowledge discovery 


  1. 1.
    Alam, M., Napoli, A.: Interactive exploration over RDF data using formal concept analysis. In: Proceedings of IEEE International Conference on Data Science and Advanced Analytics, Paris, France, August 2015Google Scholar
  2. 2.
    Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Inducing decision trees via concept lattices 1. Int. J. Gen. Syst. 38(4), 455–467 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets: Concepts, Results and Uses, no. 144. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
  4. 4.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS-ConceptStruct 2004. LNCS, vol. 3127, pp. 94–108. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27769-9_6 CrossRefGoogle Scholar
  6. 6.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS, vol. 2120, pp. 129–142. Springer, Heidelberg (2001). doi: 10.1007/3-540-44583-8_10 CrossRefGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st edn. Springer, Heidelberg (1997). doi: 10.1007/978-3-642-59830-2 zbMATHGoogle Scholar
  8. 8.
    Pancerz, K.: Decision rules in simple decision systems over ontological graphs. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226, pp. 111–120. Springer, Heidelberg (2013). doi: 10.1007/978-3-319-00969-8_11 CrossRefGoogle Scholar
  9. 9.
    Pancerz, K., Lewicki, A., Tadeusiewicz, R.: Ant-based extraction of rules in simple decision systems over ontological graphs. Int. J. Appl. Math. Comput. Sci. 25(2), 377–387 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Reynaud, J., Toussaint, Y., Napoli, A.: Contribution to the classification of web of data based on formal concept analysis. In: What Can FCA Do for Artificial Intelligence (FCA4AI) (ECAI 2016), La Haye, Netherlands, August 2016Google Scholar
  11. 11.
    Soldano, H.: Extensional confluences and local closure operators. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS, vol. 9113, pp. 128–144. Springer, Cham (2015). doi: 10.1007/978-3-319-19545-2_8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Quentin Brabant
    • 1
    Email author
  • Miguel Couceiro
    • 1
  • Amedeo Napoli
    • 1
  • Justine Reynaud
    • 1
  1. 1.LORIA (CNRS - Inria Nancy Grand Est - Université de Lorraine)Vandoeuvre-les-NancyFrance

Personalised recommendations