Optimization of Forming Processes for Gelled Propellant Manufacturing

  • J. Martínez-Pastor
  • Patricio FrancoEmail author
  • Domingo Moratilla
  • Pedro J. Lopez-Garcia
Part of the Management and Industrial Engineering book series (MINEN)


This chapter presents the basic methodologies for quality control and productivity improvement in the processes used for manufacturing of energetic materials such as gelled (colloidal) propellants, in which the electronic control systems are constrained by the severe safety requirements associated with on-process self-burning risks. The required measuring devices for data acquisition and management, the testing techniques for rheological characterization and the relationship among the main process and material parameters are the main issues introduced in this chapter, with the purpose of establishing the routines needed for an appropriate quality control of gelled propellant production. This work is focused on manufacturing processes such as batch mixing and ram extrusion. A similar methodology could be also followed for screw extrusion, in which both mixing and extrusion stages are carried out by the same equipment.


Forming processes Manufacturing processes Gelled propellants Energetic materials Batch mixing Ram extrusion Nitrocellulose gels Propellant doughs Quality control Production control Self-controlling methodology Rheological behaviour Mixing time Mixing energy Mixing temperature Extrusion pressure Ram velocity Extrusion temperature Storage time Storage modulus Loss modulus Complex modulus Power measuring Rotational rheology 


  1. 1.
    Urbanski T (1986) Chemistry and technology of explosives. Pergamon Press, New YorkGoogle Scholar
  2. 2.
    Meyer R (2007) Explosives. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Teipel U (2005) Energetic materials: particle processing and characterization. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Strütt H (1996) Handbook of mixing technology. Ekato, Schopfheim, GermanyGoogle Scholar
  5. 5.
    Kalyon DM, Dalwadi D, Erol M, Birinci E, Tsenoglu C (2006) Rheological behavior of concentrated suspensions as affected by the dynamics of the mixing process. Rheol Acta 45(5):641–658CrossRefGoogle Scholar
  6. 6.
    Yazici R, Kalyon DM, Fair D (1998) Microstructure and mixing distribution analysis in M30 triple-base propellants. Stevens Institute of Technology, Highly Filled Materials Institute, HobokenGoogle Scholar
  7. 7.
    Martinez-Pastor J, Franco P, Ramirez FJ, Lopez-Garcia P (2016) Influence of rheological behaviour on extrusion parameters during non-continuous extrusion of multi-base propellants. IntJ Mater Form. doi: 10.1007/s12289-016-1332-5 Google Scholar
  8. 8.
    Evans JR, Lindsay WM (2002) The management and control of quality, 5th edn. South-Western, Cincinnati, OhioGoogle Scholar
  9. 9.
    Groover MP (2007) Fundamentals of modern manufacturing: materials processes, and systems. Wiley, New YorkGoogle Scholar
  10. 10.
    Baker FS, Healey MJ, Privett G (1988) The rheological properties of plasticized nitrocellulose as a function of nitrocellulose precursor. Propellants Explos Pyrotech 13(4):99–102CrossRefGoogle Scholar
  11. 11.
    Baker FS, Carter RE (1982) Processing characteristics of gun propellants. Propellants Explos Pyrotech 7(6):139–147CrossRefGoogle Scholar
  12. 12.
    Birinci E, Gevgilili H, Kalyon DM, Greenberg B, Fair DF, Perich A (2006) Rheological characterization of nitrocellulose gels. J Energ Mater 24(3):247–269CrossRefGoogle Scholar
  13. 13.
    Giles HF, Wagner JR, Mount EM (2005) Extrusion: the definitive guide processing guide and handbook. William Andrew Publishing, New YorkGoogle Scholar
  14. 14.
    Michaeli W (1992) Extrusion dies for plastics and rubber. Hanser Publishing, MunichGoogle Scholar
  15. 15.
    Carter RE, Warren RC (1987) Extrusion stresses, die swell, and viscous heating effects in double-base propellants. J Rheol 31(2):151–173CrossRefGoogle Scholar
  16. 16.
    Lawal A, Kalyon DM (1997) Viscous heating in nonisothermal die flows of viscoplastic fluids with wall slip. Chem Eng Sci 52(8):1323–1337CrossRefzbMATHGoogle Scholar
  17. 17.
    Lawal A, Kalyon DM (1997) Nonisothermal extrusion flow of viscoplastic fluids with wall slip. Int J Heat Mass Transf 40(16):3883–3897CrossRefzbMATHGoogle Scholar
  18. 18.
    Lieb RJ (1987) Nitroguanidine morphology in extruded gun propellant. Technical report BRL-TR-2812, Army Ballistic Research Lab Aberdeen Providing Ground MDGoogle Scholar
  19. 19.
    Yilmazer U, Kalyon DM (1989) Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J Rheol 33(8):1197–1212CrossRefGoogle Scholar
  20. 20.
    Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) Rheological behavior of a concentrated suspension: a solid rocket fuel simulant. J Rheol 37(1):35–53CrossRefGoogle Scholar
  21. 21.
    Kalyon DM (2005) Apparent slip and viscoplasticity of concentrated suspensions. J Rheol 49(3):621–640CrossRefGoogle Scholar
  22. 22.
    Rahimi S, Peretz A, Natan B (2007) On shear rheology of gel propellants. Propellants Explos Pyrotech 32(2):165–174CrossRefGoogle Scholar
  23. 23.
    Martinez-Pastor J, Franco P, Ramirez-Fernandez FJ (2014) Rheological characterization of energetic materials by rotational testing techniques. In: ASME 2014, 12th biennial conference on engineering systems design and analysis, 25–27 June 2014, Copenhagen, DenmarkGoogle Scholar
  24. 24.
    Barnes HA (1993) An introduction to rheology. Elsevier Science Publishers B.V, AmsterdamzbMATHGoogle Scholar
  25. 25.
    Barnes HA (2000) A handbook of elementary rheology. University of Wales, Aberystwyth, UKGoogle Scholar
  26. 26.
    Macosko CW (1994) Rheology: principles, measurements and applications. Wiley-VCH, New YorkGoogle Scholar
  27. 27.
    Tanner RI (2002) Engineering rheology. Oxford Engineering Science Series, New YorkGoogle Scholar
  28. 28.
    Mitsoulis E, Abdali SS, Markatos NC (1993) Flow simulation of Herschel-Bulkley fluids through extrusion dies. Can J Chem Eng 71(1):147–160CrossRefGoogle Scholar
  29. 29.
    Mitsoulis E (2007) Annular extrudate swell of pseudoplastic and viscoplastic fluids. J Nonnewton Fluid Mech 141(2):138–147CrossRefzbMATHGoogle Scholar
  30. 30.
    Lawal A, Kalyon DM, Yilmazer U (1993) Extrusion and lubrication flows of viscoplastic fluids with wall slip. Chem Eng Commun 122(1):127–150CrossRefGoogle Scholar
  31. 31.
    Rahimi S, Durban D, Khosid S (2010) Wall friction effects and viscosity reduction of gel propellants in conical extrusion. J Nonnewton Fluid Mech 165(13):782–792CrossRefzbMATHGoogle Scholar
  32. 32.
    Warren RC, Starks AT (1988) Multiple flow regimes in the extrusion of nitrocellulose based propellant doughs. Technical report WSRL-TR-43/88Google Scholar
  33. 33.
    Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33(1):265–287CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  • J. Martínez-Pastor
    • 1
  • Patricio Franco
    • 1
    Email author
  • Domingo Moratilla
    • 2
  • Pedro J. Lopez-Garcia
    • 2
  1. 1.Departamento de Ingenieria de Materiales y FabricacionUniversidad Politecnica de CartagenaCartagenaSpain
  2. 2.EXPAL Systems S.A.MadridSpain

Personalised recommendations