Skip to main content

Measurement of Organizational Happiness

  • Conference paper
  • First Online:
Advances in Human Factors, Business Management and Leadership (AHFE 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 594))

Included in the following conference series:

Abstract

Personal well-being studies have reported a strong positive relationship between happiness and productivity, determining the need of the Human Resource (HR) function to regularly monitor and maintain employee happiness and satisfaction. However, lack of scientific precision in defining the term ‘happiness’ and inconsistency in its measurement have made this research area more challenging. The study proposes an automated detection technique that uses Natural Language Processing (NLP), to offer the HR function an easy means of implementing a technique that enables constant monitoring of happiness levels, and leverages the data into a tool for evaluating the effectiveness of programs, policies, and practices. A case study is presented to demonstrate the framework’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wren-Lewis, S.: How successfully can we measure well-being through measuring happiness? S Afr. J. Philos. 33(4), 417–432 (2014)

    Article  Google Scholar 

  2. Zelenski, J.M., Murphy, S.A., Jenkins, D.A.: The happy-productive worker thesis revisited. J. Happiness Stud. 9(4), 521–537 (2008)

    Article  Google Scholar 

  3. Atkinson, C., Hall, L.: Flexible working and happiness in the NHS. Empl. Relat. 33(2), 88–105 (2011)

    Article  Google Scholar 

  4. Robertson, I., Cooper, C.: Well-Being: Productivity and Happiness at Work. Palgrave Macmillan, London (2011)

    Book  Google Scholar 

  5. Sisley, R.: Autonomous motivation and well-being: an alternative approach to workplace stress management. NZ J. Employ. Relat. (Online) 35(2), 28–40 (2010)

    Google Scholar 

  6. Patterson, M., Warr, P., West, M.: Organizational climate and company productivity: the role of employee affect and employee level. J. Occup. Organ. Psychol. 77, 193–216 (2004)

    Article  Google Scholar 

  7. Lau, R.S.M.: Quality of work life and performance - an ad hoc investigation of two key elements in the service profit chain model. Int. J. Serv. Ind. Manag. 11(5), 422–437 (2000)

    Article  Google Scholar 

  8. Patnaik, M., Kar, A.K.: Employee satisfaction and HR practices in the private technical institutions of Odisha: an empirical study in Bhubaneswar. Int. J. Organ. Behav. Manag. Perspect. 3(2), 918–923 (2014)

    Google Scholar 

  9. Hall, L., Atkinson, C.: Improving working lives: flexible working and the role of employee control. Empl. Relat. 28(4), 374–386 (2006)

    Article  Google Scholar 

  10. Devonish, D.: Workplace bullying, employee performance and behaviors. Empl. Relat. 35(6), 630–647 (2013)

    Article  Google Scholar 

  11. Nilakant, V., et al.: Leading in a post-disaster setting: guidance for human resource practitioners. NZ J. Employ. Relat. (Online) 38(1), 1–13 (2013)

    Google Scholar 

  12. Donald, D.U.: Talent management and human resource practices. Int. J. Innov. Appl. Stud. 6(4), 1011–1018 (2014)

    Google Scholar 

  13. Boyd, N., Gessner, B.: Human resource performance metrics: methods and processes that demonstrate you care. Cross Cult. Manag. 20(2), 251–273 (2013)

    Article  Google Scholar 

  14. Okpara, J.O., Wynn, P.: Human resource management practices in a transition economy. Manag. Res. News 31(1), 57–76 (2008)

    Article  Google Scholar 

  15. Fitsum, G., Luchien, K.: Human resource management practices in Eritrea: challenges and prospects. Empl. Relat. 28(1/2), 144–163 (2006)

    Google Scholar 

  16. Geroy, G.D., Wright, P.C., Jacoby, L.: Toward a conceptual framework of employee volunteerism: an aid for the human resource manager. Manag. Decis. 38(4), 280–286 (2000)

    Article  Google Scholar 

  17. Aamodt, M.G.: The role of the I/O psychologist in police psychology. J. Police Crim. Psychol. 15(2), 8–10 (2000)

    Article  Google Scholar 

  18. Khan, R., et al.: Hot zone identification: analyzing effects of data sampling on spam clustering. J. Digit. Forensics Secur. Law: JDFSL 9(1), 67–82 (2014)

    Google Scholar 

  19. Potkay, A.: Narrative possibilities of happiness, unhappiness, and joy. Soc. Res. 77(2), 523–0_3 (2010)

    Google Scholar 

  20. Ryff, C.D., Keyes, C.L.M.: The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 69(4), 719 (1995)

    Article  Google Scholar 

  21. Springer, K.W., Hauser, R.M.: An assessment of the construct validity of Ryff’s scales of psychological well-being: method, mode, and measurement effects. Soc. Sci. Res. 35(4), 1080–1102 (2006)

    Article  Google Scholar 

  22. Hills, P., Argyle, M.: The Oxford happiness questionnaire: a compact scale for the measurement of psychological well-being. Pers. Individ. Differ. 33, 1073–1082 (2002)

    Article  Google Scholar 

  23. Diener, E., et al.: The satisfaction with life scale. J. Pers. Assess. 49(1), 71–75 (1985)

    Article  MathSciNet  Google Scholar 

  24. Diener, E.: Guidelines for national indicators of subjective well-being and ill-being. J. Happiness Stud. 7(4), 397–404 (2006)

    Article  Google Scholar 

  25. Peterson, C., Park, N., Seligman, M.E.: Orientations to happiness and life satisfaction: the full life versus the empty life. J. Happiness Stud. 6(1), 25–41 (2005)

    Article  Google Scholar 

  26. Singh, K., Jha, S.D.: Positive and negative affect, and grit as predictors of happiness and life satisfaction. J. Indian Acad. Appl. Psychol. 34, 40–45 (2008)

    Google Scholar 

  27. Brockmann, H., et al.: The China puzzle: falling happiness in a rising economy. J. Happiness Stud. 10(4), 387–405 (2009)

    Article  Google Scholar 

  28. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of a brief measure of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988)

    Article  Google Scholar 

  29. Lyubomirsky, S., Lepper, H.S.: A measure of subjective happiness: preliminary reliability and construct validation. Soc. Indic. Res. 46(2), 137–155 (1999)

    Article  Google Scholar 

  30. Lucas, R.E.: Adaptation and the set-point model of subjective well-being: does happiness change after major life events? Curr. Dir. Psychol. Sci. 16(2), 75–79 (2007)

    Article  Google Scholar 

  31. Patterson, G.T., Chung, I.W., Swan, P.W.: Stress management interventions for police officers and recruits: a meta-analysis. J. Exp. Criminol. 10(4), 487–513 (2014)

    Article  Google Scholar 

  32. Cohn, M.A., Mehl, M.R., Pennebaker, J.W.: Linguistic markers of psychological change surrounding september 11, 2001. Psychol. Sci. 15(10), 687–693 (2004). (Wiley-Blackwell)

    Article  Google Scholar 

  33. Stiles, W.B., Putnam, S.M.: Verbal exchanges in medical interviews: concepts and measurement. Soc. Sci. Med. 35(3), 347–355 (1992)

    Article  Google Scholar 

  34. Oxman, T.E., Rosenberg, S.D., Tucker, G.J.: The language of paranoia. Am. J. Psychiatry 139(3), 275–282 (1982)

    Article  Google Scholar 

  35. Oxman, T.E., et al.: Diagnostic classification through content analysis of patients’ speech. Am. J. Psychiatry 145(4), 464–468 (1988)

    Article  Google Scholar 

  36. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resources Eval. 39(2–3), 165–210 (2005)

    Article  Google Scholar 

  37. Haggag, M.H.: Frame semantics evolutionary model for emotion detection. Comput. Inf. Sci. 7(1), 136–161 (2014)

    Google Scholar 

  38. Rains, S.A., Young, A.M.: A sign of the times: an analysis of organizational members’ email signatures. J. Comput. Mediated Commun. 11, 1046–1061 (2006)

    Article  Google Scholar 

  39. Hagler, B.E., et al.: Measuring future worker productivity via business email message creation: implications for education. Delta Pi Epsilon J. 51(3), 152–165 (2009)

    Google Scholar 

  40. Lindsey, R., et al.: Be wary of what your computer reads: the effects of corpus selection on measuring semantic relatedness. In: 8th International Conference of Cognitive Modeling, ICCM 2007, Ann Arbor, MI (2007)

    Google Scholar 

  41. Wilson, G., Banzhaf, W.: Discovery of email communication networks from the Enron corpus with a genetic algorithm using social network analysis. In: Evolutionary Computation, CEC 2009. IEEE Congress (2009)

    Google Scholar 

  42. Garrett, J.L.: SOS: written English is in trouble. Kappa Delta Pi Record 45(1), 8–9 (2008)

    Article  Google Scholar 

  43. Acerbi, A., et al.: The expression of emotions in 20th century books. PLoS One 8(3), e59030 (2013)

    Article  Google Scholar 

  44. Mohammad, S.M., Yang, T.: Tracking sentiment in mail: how genders differ on emotional axes. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (ACL-HLT), 01 Jan 2011 (2011)

    Google Scholar 

  45. Larsen, J.T., McGraw, A.P., Cacioppo, J.T.: Can people feel happy and sad at the same time? J. Pers. Soc. Psychol. 81(4), 684–696 (2001)

    Article  Google Scholar 

  46. Nanda, U.P., Pati, D.P., McCurry, K.: Neuroesthetics and healthcare design. HERD: Health Environ. Res. Des. J. 2(2), 116–133 (2009)

    Google Scholar 

  47. Chemali, Z.N., Chahine, L.M., Naassan, G.: On happiness: a minimalist perspective on a complex neural circuitry and its psychosocial constructs. J. Happiness Stud. 9(4), 489–501 (2008)

    Article  Google Scholar 

  48. Perez, E.A., D’Hombres, B., Mascherini, M.: Why are managers happier than workers? European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen. EUR 24477 EN (2010)

    Google Scholar 

  49. Wofford, T.D.: A Study of Worker Demographics and Workplace Job Satisfaction for Employees in a Global Engineering and Construction Organization, p. 188. Nova Southeastern University, Ann Arbor (2003)

    Google Scholar 

  50. Palus, S., Bródka, P., Kazienko, P.: Evaluation of organization structure based on email interactions. Int. J. Knowl. Soc. Res. 2(1), 1–13 (2011)

    Article  Google Scholar 

  51. Petra, S.T., Loukatos, G.: The Sarbanes-Oxley Act of 2002: a five-year retrospective. Corp. Gov. 9(2), 120–132 (2009)

    Article  Google Scholar 

  52. Norris, F.: Where did the value go at Enron? New York Times, 23 Oct 2001 (2001)

    Google Scholar 

  53. Thomas, C.W.: The rise and fall of Enron. J. Accountancy 193(4), 41 (2002)

    Google Scholar 

  54. Rezaee, Z.: The three Cs of fraudulent financial reporting. Internal Auditor 59(5), 56–61 (2002)

    Google Scholar 

  55. Sims, R.R., Brinkmann, J.: Enron ethics (or: culture matters more than codes). J. Bus. Ethics 45(3), 243–256 (2003)

    Article  Google Scholar 

  56. Magee, W.: Anxiety, demoralization, and the gender difference in job satisfaction. Sex Roles 69(5–6), 308–322 (2013)

    Article  Google Scholar 

  57. Sousa-Poza, A., Sousa-Poza, A.A.: Taking another look at the gender/job-satisfaction paradox. Kyklos 53(2), 135–152 (2000)

    Article  Google Scholar 

  58. Clark, A.E.: Job satisfaction and gender: why are women so happy at work? Labour Econ. 4(4), 341–372 (1997)

    Article  Google Scholar 

  59. Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010)

    Article  Google Scholar 

  60. Steffensmeier, D.J., Schwartz, J., Roche, M.: Gender and twenty-first-century corporate crime: female involvement and the gender gap in Enron-Era corporate frauds. Am. Sociol. Rev. 78(3), 448–476 (2013)

    Article  Google Scholar 

  61. Diesner, J., Frantz, T.L., Carley, K.M.: Text mining the Enron email corpus for stock price prediction, National College of Ireland. Comput. Math. Organ. Theory 11(3), 201–228 (2005)

    Article  MATH  Google Scholar 

  62. Eckhaus, E.: Corporate transformational leadership’s effect on financial performance. J. Leadersh. Accountability Ethics 13(1), 90–102 (2016)

    Google Scholar 

  63. Ying, X., Wu, X.: On link privacy in randomizing social networks. Knowl. Inf. Syst. 28(3), 645–663 (2011)

    Article  MathSciNet  Google Scholar 

  64. Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical report. Information Sciences Institute Technical Report, University of Southern California (2004)

    Google Scholar 

  65. Özcan, F., et al.: Integration of SQL and XQuery in IBM DB2. IBM Syst. J. 45(2), 245–270 (2006)

    Article  MathSciNet  Google Scholar 

  66. Creamer, G., et al.: Segmentation and automated social hierarchy detection through email network analysis. In: Haizheng, Z., et al. (eds.) Advances in Web Mining and Web Usage Analysis, pp. 40–58. Springer-Verlag (2009)

    Google Scholar 

  67. Razavi, A.H., et al.: Dream sentiment analysis using Second Order Soft Co-Occurrences (SOSCO) and time course representations. J. Intell. Inf. Syst. 42(3), 393–413 (2014)

    Google Scholar 

  68. Cheng, L.T.E., et al.: Discerning tumor status from unstructured MRI reports–completeness of information in existing reports and utility of automated natural language processing. J. Digit. Imaging 23(2), 119–132 (2010)

    Article  Google Scholar 

  69. Greasley, P., Sherrard, C., Waterman, M.: Emotion in language and speech: methodological issues in naturalistic approach. Lang. Speech 43, 355–375 (2000)

    Article  Google Scholar 

  70. Bort, J.: Google warns: we are scanning your email, in Business Insider, 15 April 2014 (2014). http://www.businessinsider.com/google-warns-we-are-scanning-your-email-2014–4

  71. Yu, C.H.: Are positive trait attributions for the deceased caused by fear of supernatural punishments?: A triangulated study by content analysis and text mining. J. Psychol. Christianity 34(1), 3–18 (2015)

    Google Scholar 

  72. Arroniz, I.: Extracting Quantitative Information from Nonnumeric Marketing Data: An Augmented Latent Semantic Analysis Approach, p. 143. University of Central Florida, Ann Arbor (2007)

    Google Scholar 

  73. Merkl-Davies, D.M., Brennan, N.M., Vourvachis, P.: Content analysis and discourse analysis in corporate narrative reporting research: a methodological guide. In: Centre for Impression management in Accounting Communication (CIMAC) Conference, 6th June 2014. Bangor Business School London Centre (2014)

    Google Scholar 

  74. Altinçay, H., Erenel, Z.: Ternary encoding based feature extraction for binary text classification. Appl. Intell. 41(1), 310–326 (2014)

    Article  Google Scholar 

  75. Li, C., Wu, H., Jin, Q.: Emotion classification of Chinese microblog text via fusion of bow and evector feature representations. In: Zong, C., et al. (eds.) Proceedings of Natural Language Processing and Chinese Computing: Third CCF Conference, NLPCC 2014, Shenzhen, China, 5–9 December 2014, pp. 217–228. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyal Eckhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Eckhaus, E. (2018). Measurement of Organizational Happiness. In: Kantola, J., Barath, T., Nazir, S. (eds) Advances in Human Factors, Business Management and Leadership. AHFE 2017. Advances in Intelligent Systems and Computing, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-319-60372-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60372-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60371-1

  • Online ISBN: 978-3-319-60372-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics