Advertisement

Physiology of Actinobacteria

  • Olga GenilloudEmail author
Chapter

Abstract

Actinomycetes are saprophytic bacteria that colonize a broad diversity of terrestrial and marine substrates in a constantly changing physical and chemical environment. They present unique metabolic capacities, but more importantly they represent one of the most prolific sources of bioactive secondary metabolites. This chapter will cover current information about the physiology of actinomycetes represented by a few species of Streptomyces from the perspective of their growth requirements and use of nutrient sources, as well as their impact in the plasticity of their primary metabolism in connection with the tight regulation of their secondary metabolism and their life cycle development.

References

  1. Adams CW, Fornwald JA, Schmidt FJ et al (1988) Gene organization and structure of the Streptomyces lividans gal operon. J bacterial 170:203–212CrossRefGoogle Scholar
  2. Albrecht A, Ottow JCG, Benckiser G et al (1997) Incomplete denitrification (NO and N2O) from nitrate by Streptomyces violaceoruber and S. nitrosporeus revealed by acetylene inhibition and 15N gas chromatography quadrupole mass spectrometry analyses. Naturwissenschaften 84:145–147CrossRefGoogle Scholar
  3. Alim S, Ring K (1976) Regulation of amino acid transport in growing cells of Streptomyces hydrogenans. II: correlation between transport capacity and growth rate in chemostat culture. Arch Microbiol 111:105–110PubMedCrossRefGoogle Scholar
  4. Alves AM, Euverink GJ, Bibb MJ, Dijkhuizen L (1997) Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3 (2). Appl Environ Microbiol 63:956–961PubMedPubMedCentralGoogle Scholar
  5. Apel AK, Sola-Landa A, Rodríguez-García A, Martín JF (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153:3527–3537PubMedCrossRefGoogle Scholar
  6. Aretz W, Koller KP, Riess G (1989) Proteolytic enzymes from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett 65:31–36CrossRefGoogle Scholar
  7. Arhin FF, Shareck F, Kluepfel D, Morosoli R (1994) Effects of disruption of xylanase-encoding genes on the xylanolytic system of Streptomyces lividans. J Bacteriol 176:4924–4930PubMedPubMedCentralCrossRefGoogle Scholar
  8. Atkinson MR, Ninfa AJ (1998) Role of GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447PubMedCrossRefGoogle Scholar
  9. Bahri SM, Ward M (1990) Regulation of a thermostable a-amylase of Streptomyces thermoviolaceus CUB74: maltotriose is the smallest inducer. Biochimie 72:8983–8895CrossRefGoogle Scholar
  10. Bascaran V, Hardisson C, Brana AF (1989) Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J Gen Microbiol 135:2465–2474Google Scholar
  11. Bascaran V, Hardisson C, Brana AF (1990) Regulation of extracellular protease production in Streptomyces clavuligerus. Appl Microbiol Biotechnol 34:208–213CrossRefGoogle Scholar
  12. Behal V, Cudlin J, Vanek Z (1969) Regulation of biosynthesis of secondary metabolites. Folia Microbiol III 14:117–120CrossRefGoogle Scholar
  13. Behrmann I, Hillemann D, Pühler A, Strauch E, Wohlleben W (1990) Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 172:5326–5334PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bell JM, Falconer C, Colby J, Williams E (1987) CO metabolism in a thermophilic actinomycete, Streptomyces strains G26. J Gen Microbiol 133:3445–3456Google Scholar
  15. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  16. Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F (2004) In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186:1362–1373PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Op Microbiol 8:208–215CrossRefGoogle Scholar
  18. Bibb MJ, Jones GH, Joseph R et al (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2): affinity purification and characterization of the cloned gene product. J Gen Microbiol 133:2089–2096PubMedGoogle Scholar
  19. Biro S, Chater KF (1987) Cloning of Streptomyces griseus and Streptomyces lividans genes for glycerol dissimilation. Gene 56:79–86PubMedCrossRefGoogle Scholar
  20. Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829PubMedPubMedCentralCrossRefGoogle Scholar
  21. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen I, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283:25186–25199PubMedCrossRefGoogle Scholar
  22. Bramwell H, Hunter IS, Coggins JR, Nimmo HG (1996) Proponyl-CoA carboxylase from Streptomyces coelicolor A3(2): purification of the enzyme, cloning of the ppc gene and overexpression of the protein in a streptomycete. Bioechem J 293:131–136CrossRefGoogle Scholar
  23. Brana AF, Manzanal MB, Hardisson C (1982) Characterization of intracellular polysaccharides of Streptomyces. Can J Microbiol 28:1320–1323PubMedCrossRefGoogle Scholar
  24. Brautase T, Sekurova ON, Sletta H et al (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403CrossRefGoogle Scholar
  25. Brawner ME, Matter SG, Babcock MJ, Westpheling J (1997) The Streptomyces galP1 promoter was a novel RNA polymerase recognition sequence and is transcribed by a new RNA polymerase in vitro. J Bacteriol 179:3222–3231PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148PubMedCrossRefGoogle Scholar
  27. Butler MJ, Deutscher J, Postma PW, Wilson TJ, Galinier A, Bibb MJ (1999) Analysis of a ptsH homologue from Streptomyces coelicolor A3(2). FEMS Microbiol Lett 177:279–288PubMedCrossRefGoogle Scholar
  28. Campelo AB, Gil JA (2002) The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51–59PubMedCrossRefGoogle Scholar
  29. Carmody M, Byrne B, Murphy B et al (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115PubMedCrossRefGoogle Scholar
  30. Cen X-F, Wang J-Z, Zhao G-P et al (2016) Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor. Biochem Biophys Res Commun 471:510–514PubMedCrossRefGoogle Scholar
  31. Chang PC, Kuo TC, Tsugita A, Lee YHM (1990) Extracellular metalloprotease gene of Streptomyces cacoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene 88:87–95PubMedCrossRefGoogle Scholar
  32. Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–711PubMedCrossRefGoogle Scholar
  33. Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198PubMedCrossRefGoogle Scholar
  34. Chatterjee S, Vining LC (1981) Nutrient utilization in actinomycetes. Induction of α-glucosidases in Streptomyces venezuelae. Can J Microbiol 27:639–645PubMedCrossRefGoogle Scholar
  35. Dauter Z, Dauter M, Hemker J et al (1989) Crystallization ad preliminary analysis of glucose isomerase from Streptomyces albus. FEBS Lett 247:1–8PubMedCrossRefGoogle Scholar
  36. Dekleva ML, Strohl WR (1988) Biosynthesis of e-rhodomycinone from glucose by Streptomyces C5 and comparison with intermediary metabolism of other polyketide-producing streptomycetes. Can J Microbiol 34:1235–1240PubMedCrossRefGoogle Scholar
  37. Díaz M, Esteban A, Fernández-Abalos JM et al (2005) The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151:2583–2592PubMedCrossRefGoogle Scholar
  38. Drew SW, Demain AL (1977) Effect of primary metabolism on secondary metabolism. Annu Rev Microbiol 31:343–356PubMedCrossRefGoogle Scholar
  39. Dyson P (ed) (2011) Streptomyces: molecular biology and biotechnology. Caister Academic Press, NorfolkGoogle Scholar
  40. Elbein AD (1968) Trehalose phosphate synthesis in Streptomyces hygroscopicus: purification of guanosine diphosphate D-glucose:D-glucose-6-phosphate 1-glucosyl-trasnferase. J Bacteriol 96:1623–1631PubMedPubMedCentralGoogle Scholar
  41. Elvin CM, Dixon NE, Rosenberg H (1986) Molecular cloning of the phosphate (inorganic) transport (pit) gene of Escherichia coli K12. Identification of the pit+ gene product and physical mapping of the pit–gor region of the chromosome Mol Gen Genet 204:477–484PubMedGoogle Scholar
  42. Emes AV, Vining LC (1970) Partial purification and properties of L-phenylalanine ammonia-lyase from Streptomyces verticillatus. Can J Biochem 48:613–622PubMedCrossRefGoogle Scholar
  43. Euverink GJW, Hessels GI, Vrijbloed JW et al (1992) Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J Gen Microbiol 138:2449–2457PubMedCrossRefGoogle Scholar
  44. Fink D, Falke D, Wohlleben W, Engels A (1999) Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145:2313–2322PubMedCrossRefGoogle Scholar
  45. Fink D, Weibschuch N, Reuther J, wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicor A3(2). Mol Microbiol 46:331–347Google Scholar
  46. Florova G, Denoya CD, Morgensten MR et al (1998) Cloning, expression and characterization of a type II 3-dehydroquinate dehydratase gene from Streptomyces hygroscopicus. Arch Biochem Biophys 350:298–306PubMedCrossRefGoogle Scholar
  47. Fothergill JC, Guest JR (1977) Catabolism of L-Lysine by Pseudomonas aeruginosa. J Gen Microbiol 99:139–155PubMedCrossRefGoogle Scholar
  48. Fritsch J, Gross W (1983) Studies on the transport of anions and zwitterions of acidic amino acids in Streptomyces hydrogenans. Z Naturforsch 38c:617–620Google Scholar
  49. Gadkari D, Schricker K, Acker G et al (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithotroph. Appl Environ Microbiol 56:3727–3734PubMedPubMedCentralGoogle Scholar
  50. Garbe T, Servos S, Hawkins A et al (1991) The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol Gen Genet 228:385–392PubMedCrossRefGoogle Scholar
  51. Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J, Virolle MJ (2006) Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 188:6269–6276Google Scholar
  52. Gil JA, Naharro G, Villanueva JR, Martin JF (1985) Characterization and regulation of p-aminobenzoic acid synthase from Streptomyces griseus. J Gen Microbiol 131:1279–1287PubMedGoogle Scholar
  53. Godden B, Legon T, Helvenstein P, Penninckx M (1989) Regulation of the production of hemicellulytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J Gen Microbiol 135:285–292PubMedGoogle Scholar
  54. Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216PubMedCrossRefGoogle Scholar
  55. Grafe U, Bormann EJ, Roth M, Neigenfind M (1986) Mutants of Streptomyces hygroscopicus deregulated in amylase and α-glucosidase formation. Biotechnol Lett 8:615–620CrossRefGoogle Scholar
  56. Gross W, Burkhardt K-L (1973) Multiple transport systems for basic amino acid transport in Streptomyces hydrogenans. Biochim Biophys Acta 298:437–445PubMedCrossRefGoogle Scholar
  57. Gross W, Ring K (1971) Effect of chloramphenicol on active amino acid transport. FEBS Lett 4:319–322CrossRefGoogle Scholar
  58. Gubbens J, Janus M, Florea BI et al (2012) Identification of glucose kinase-dependent and—independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 86:1490–1507PubMedCrossRefGoogle Scholar
  59. Gunnarsson N, Mortensen UH, Sosio M, Nielsen J (2004) Identification of the Entner-Doudoroff pathway in an antibiotic producing actinomycete species. Mol Microbiol 52:895–902PubMedCrossRefGoogle Scholar
  60. Hagino H, Nakayama K (1968) Amino acid metabolism in microorganisms. IV: L-methionine decarboxylase produced by a Streptomyces strain. Agric Biol Chem 32:727–733Google Scholar
  61. Han L, Reynolds KA (1997) A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol 179:5157–5164PubMedPubMedCentralCrossRefGoogle Scholar
  62. Harth G, Maslesa-Galic S, Tullius MV, Horwitz MA (2005) All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58:1157–1172PubMedCrossRefGoogle Scholar
  63. Hesketh A, Chen WJ, Ryding J, Chang S, Bibb MJ (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hey-Ferguson A, Mitchell M, Elbein AD (1973) Trehalose metabolism in germinating spores of Streptomyces hygroscopicus. J Bacteriol 116:1084–1085PubMedPubMedCentralGoogle Scholar
  65. Hillemann D, Dammann T, Hillemann A, Wohlleben W (1993) Genetic and biochemical characterization of the two glutamine synthetases GSI and GSII of the phosphinothricyl-alanyl-alanine producer, Streptomyces viridochromogenes Tü494. J Gen Microbiol 139:1773–1783PubMedCrossRefGoogle Scholar
  66. Hodgson DA (2000) primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238PubMedCrossRefGoogle Scholar
  67. Homerova D, Benada O, Kofronova O et al (1996) Disruption of a glycogen-branching enzyme gene, glgB, specifically affects the sporulation-associated phase of glycogen accumulation in Streptomyces aureofaciens. Microbiology 142:1201–1208CrossRefGoogle Scholar
  68. Hood DW, Heidstra R, Swoboda UK, Hodgson DA (1992) Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism: a review. Gene 115:5–12PubMedCrossRefGoogle Scholar
  69. Hoskisson PA, Sharples GP, Hobbs G (2003) The importance of amino acids as carbon sourcesfor Micromonospora echinospora (ATCC 15837). Lett Appl Microbiol 36:268–271PubMedCrossRefGoogle Scholar
  70. Hu DS, Hood DW, Heidstra R, Hodgson DA (1999) The expression of the trpD, trpC and trpBA genes in Streptomyces coelicolor A3(2) is regulated by growth rate and growth phase but not by feedback repression. Mol Microbiol 32:869–880PubMedCrossRefGoogle Scholar
  71. Jiang P, Ninfa AJ (2009) Reconstitution of Escherichia coli glutamine synthetase adenylyltransferase from N-terminal and C-terminal fragments of the enzyme. Biochemistry 48:415–423PubMedCrossRefGoogle Scholar
  72. Johnson KG, Harrison BA, Schneider H et al (1988) Xylan-hydrolyzing enzymes from Streptomyces spp. Enzym Microb Technol 10:403–409CrossRefGoogle Scholar
  73. Katz E, Brown D, Hitchcock MJM et al (1984) Regulation of tryptophan metabolism and its relationship to actinomycin D synthesis. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic Press, New York, pp 325–342CrossRefGoogle Scholar
  74. Kern BA, Hendlin D, Inamine E (1980) L-lysine ε-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob Agents Chemother 17:679–685PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kern BA, Inamine E (1981) Cystathionine γ-lyase activity in the cephamycin C producer Streptomyces lactamdurans. J Antibiot 34:583–589PubMedCrossRefGoogle Scholar
  76. van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wösten HAB (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185:1455–1458PubMedPubMedCentralCrossRefGoogle Scholar
  77. van Keulen G, Siebring J, Dijkhuizen L (2011) Central carbon metabolic pathways in Streptomyces. In: Dyson P (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, pp 105–123Google Scholar
  78. King AA, Chater KF (1986) The expression of the Escherichia coli lacZ gene in Streptomyces. J Gen Microbiol 132:1739–1752PubMedGoogle Scholar
  79. Kirkpatrick JR, Godfrey OW (1973) The isolation and characterization of auxotrophs of the aspartic acid family from Streptomyces lipmanii. Folia Microbiol 18:90–101CrossRefGoogle Scholar
  80. Kitano K, Nozaki Y, Imada A (1985) Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomyces griseus subsp. cryophilus C-19393. Agric Biol Chem 49:677–684Google Scholar
  81. Kroening TA, Kendrick KE (1989) Cascading regulation of histidine ammonia-lyase activity from Streptomyces griseus. J Bacteriol 171:1100–1105PubMedPubMedCentralCrossRefGoogle Scholar
  82. Laluce C, Molinari R (1977) Selection of a chemically defined medium for submerged cultivation of Streptomyces aureofaciens with high extracellular caseinolytic activity. Biotechnol Bioeng 19:1863–1884PubMedCrossRefGoogle Scholar
  83. Lee SH, Lee KJ (1993) Aspartate aminotransferase and tylosin biosynthesis in Streptomyces fradiae. Appl Environ Microbiol 59:822–827PubMedPubMedCentralGoogle Scholar
  84. Li CX, Florova G, Akopiants K, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472PubMedCrossRefGoogle Scholar
  85. Lounes A, Lebrihi A, Benslimane C et al (1995) Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Can J microbial 31:304–311Google Scholar
  86. MacKenzie CR, Bilous D, Schneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839PubMedPubMedCentralGoogle Scholar
  87. Madduri K, Stuttard C, Vining LC (1989) Lysine catabolism in Streptomyces spp is primarily through cadaverine: β-lactam producers also make α-aminoadipate. J Bacterial 171:299–302CrossRefGoogle Scholar
  88. Manteca A, Sanchez J (2009) Streptomyces development in colonies and soils. Appl Environ Microbiol 75:2920–2924PubMedPubMedCentralCrossRefGoogle Scholar
  89. Martín JF, Demain AL (1980) Control of antibiotic synthesis. Microbiol Rev 44:230–251PubMedPubMedCentralGoogle Scholar
  90. Martin MC, Schneider D, Bruton CJ et al (1977) A glgC gene essential only for the first two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2). J Bacteriol 179:7784–7789CrossRefGoogle Scholar
  91. McBride MJ, Ensign JC (1987) Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J Bacteriol 169:5002–5007PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mendelovitz S, Aharonowitz Y (1982) Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus. Antimicrob Agents Chemother 21:74–84PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mendez C, Brana AF, Manzanal MB, Hardisson C (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31:446–450PubMedCrossRefGoogle Scholar
  94. Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622PubMedPubMedCentralGoogle Scholar
  95. Moore SA, Ronimus RS, Roberson RS, Morgan HW (2002) The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi. Structure (Camb) 10:659–671CrossRefGoogle Scholar
  96. Mostafa SA (1979) production of L-asparaginase by Streptomyces karnatakensis and Streptomyces venezuelae. Zbl Bakt II Abt 134:429–436Google Scholar
  97. Murphy MF, Katz E (1980) regulatory control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase in Streptomyces antibioticus. Can J Microbiol 26:874–880PubMedCrossRefGoogle Scholar
  98. Nagawasa T, Kanzaki H, Yamada H (1984) Cystathionine γ-lyase of Streptomyces phaeochromogenes: the occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem 252:5267–5273Google Scholar
  99. Nguyen KT, Frabcou F, Virolle MJ, Guerineau M (1997) Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol 179:6383–6390PubMedPubMedCentralCrossRefGoogle Scholar
  100. Nguyen KT, Nguyen LT, Behal V (1995) The induction of valine dehydrogenase activity from Streptomyces by l-valine is not repressed by ammonium. Biotechnol Lett 17:31–34CrossRefGoogle Scholar
  101. Nodwell JR, McGovern K, Losick R (1996) An oligopeptide permesase responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22:881–893PubMedCrossRefGoogle Scholar
  102. Novak J, Kopecky J, Vanek Z (1997) Nitrogen source regulates expression of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium. Can J Microbiol 43:189–193CrossRefGoogle Scholar
  103. O’Hagan D, Rogers SV, Duffin GR, Reynolds KA (1995) The biosynthesis of monensin-A: thymine, β-aminoisobutyrate and methacrylate metabolism in Streptomyces cinnamonensis. J Antibiot 48:1280–1287PubMedCrossRefGoogle Scholar
  104. Ohe T, Watanabe Y (1977) Effect of glucose and ammonium on the formation of xanthine dehydrogenase of Streptomyces sp. (Studies on the control of purine base metabolism in Streptomyces. Part II). Agric Biol Chem 41:1161–1170Google Scholar
  105. Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292PubMedCrossRefGoogle Scholar
  106. Paradkar AS, Stuttard C, vining LC (1993) Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. J Gen Microbiol 139:687–694Google Scholar
  107. Piette A, Derouaux A, Gerkens P et al (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4:1699–1708PubMedCrossRefGoogle Scholar
  108. Pokorny M, Lj V, Turk V et al (1979) Streptomyces rimosus extracellular proteases. 1: Characterization and evaluation of various crude preparartions. Eur J Appl Microbiol 8:81–90CrossRefGoogle Scholar
  109. Potrykus K, Cashel M (2008) ppGpp: still magical? Rev Microbiol 62:35–51CrossRefGoogle Scholar
  110. Pullan T, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175. doi: 10.1186/1471-2164-12-175
  111. Rao NN, Torriani A (1990) Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 4:1083–1090PubMedCrossRefGoogle Scholar
  112. Rascher A, Hu Z, Viswanathan N et al (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230PubMedCrossRefGoogle Scholar
  113. Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146PubMedCrossRefGoogle Scholar
  114. Reynolds KA, O’Hagan D, Gani D, Robinson JA (1988) Butyrate metabolism in streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate in Streptomyces cinnamonensis. J Chem Soc Perkin Trans 1:3195–3207Google Scholar
  115. Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ring K, Foit B, Ehle H (1977) Stimulation of active uptake of 2-aminobutyric acid in Streptomyces hydrogenans by exogenous dibutyryl cyclic AMP. FEMS Microbiol Lett 2:27–30CrossRefGoogle Scholar
  117. Rius N, Maeda K, Demain AL (1996) Induction of l-lysine ε-aminotransferase by l-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol Lett 144:207–211PubMedGoogle Scholar
  118. Robbins PW, Overbye K, Albright C et al (1992) Cloning and high-level expression of chitinase-encoding gene of Streptomyces plicatus. Gene 111:69–76PubMedCrossRefGoogle Scholar
  119. Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7:2410–2429PubMedCrossRefGoogle Scholar
  120. Rodríguez-García A., Sola-Landa A, Apel K., Santos-Beneit and Martín J.F. ( 2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucl. Acids Res 37: 3230-3242CrossRefGoogle Scholar
  121. Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511PubMedPubMedCentralGoogle Scholar
  122. Rosenberg H, Gerdes RG, Harold FM (1979) Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. Biochem J 178:133–137PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139PubMedPubMedCentralCrossRefGoogle Scholar
  124. Saier MH Jr, Reizer J (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764Google Scholar
  125. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enz Microbial Technol 31:895–906CrossRefGoogle Scholar
  126. Santos-Beneit F, Rodríguez-García A, Franco-Domínguez E, Martín JF (2008) Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154:2356–2370PubMedCrossRefGoogle Scholar
  127. Sawada Y, Nakashima S, Taniyama H (1977) Biosynthesis of streptothricin antibiotics. VI: mechanisms of β-lysine and its peptide formation. Chem Pharm Bull 25:3210–3217CrossRefGoogle Scholar
  128. Schloesser A, Kampers T, Schrempf H (1997) The Streptomyces ATP binding component MsiK assists in cellobiose and maltose transport. J Bacteriol 179:2092–2095CrossRefGoogle Scholar
  129. Seno ET, Chater KF (1983) Glycerol catabolic enzymes and their regulation in wild-type and mutant strains of Streptomyces coelicolor A3(2). J Gen Microbiol 129:1403–1413PubMedGoogle Scholar
  130. Shapiro S, Vining LC (1984) Suppression of nitrate utilization by ammonium and its relationship to chloramphenicol production in Streptomyces venezuelae. Can J Microbiol 30:798–804PubMedCrossRefGoogle Scholar
  131. Shin H-S, Lee KJ (1986) Regulation of extracellular alkaline protease biosynthesis in a strain of Streptomyces sp. Kor. J Microbiol 24:32–37Google Scholar
  132. Smanski MJ, Peterson RM, Rajski SR, Shen B (2009) Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob Agents Chemother 53:1299–1304PubMedPubMedCentralCrossRefGoogle Scholar
  133. Smith DDS, Wood NJ, Hodgson DA (1995) Interaction between primary and secondary metabolism in Streptomyces coelicolor A3(2): role of pyrroline-5-carboxylate dehydrogenase. Microbiology 141:1739–1744PubMedCrossRefGoogle Scholar
  134. Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6138PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36:1358–1368PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385PubMedCrossRefGoogle Scholar
  137. Takano E (2006) γ-butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr Op Microbiol 9:287–294CrossRefGoogle Scholar
  138. Tiffert Y, Franz-Wachtel M, Fladerer C et al (2011) Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 89:1149–1159PubMedCrossRefGoogle Scholar
  139. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Biol 67:861–880Google Scholar
  140. Titgemeyer F, Reizer J, Reizer A, Saier MH Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354Google Scholar
  141. Tsuyuki H, Kajiwara K, Fujita A et al (1991) Purification and characterization of Streptomyces griseus metalloendopeptidases I and II. J Biochem 110:339–344PubMedCrossRefGoogle Scholar
  142. Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162PubMedCrossRefGoogle Scholar
  143. Udaka S (1966) Pathway specific patter of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621PubMedPubMedCentralGoogle Scholar
  144. Uwajima T, Yoshikawa N, Terada O (1973) Production of aminopeptidase and carboxypeptidase by Streptomyces peptidofaciens. Agric Biol Chem 37:1517–1523CrossRefGoogle Scholar
  145. Van Wezel G, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333PubMedCrossRefGoogle Scholar
  146. Vancura A, Rezanka T, Marsalek J et al (1987) Effect of ammonium on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Lett 48:357–260CrossRefGoogle Scholar
  147. Vancura A, Rezanka T, Marsalek J et al (1988) Metabolism of threonine and fatty acids and tylosin biosynthesis in Streptomyces fradiae. FEMS Microbiol Lett 49:411–415CrossRefGoogle Scholar
  148. Virolle MJ, Long CM, Chang S, Bibb MJ (1988) Cloning, characterization and regulation of an α-amylase gene from Streptomyces venezuelae. Gene 74:321–334PubMedCrossRefGoogle Scholar
  149. Vorisek J, Powell AJ, Vanek Z (1969) regulation of biosynthesis of secondary metabolites. IV: Purification and properties of phosphoenolpyruvate carboxylase in Streptomyces aureofaciens. Folia Microbiol 14:398–405CrossRefGoogle Scholar
  150. Vosbeck KD, Greenberg BD, Ochoa MS et al (1978) Proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (pronase). J Biol Chem 253:257–260PubMedGoogle Scholar
  151. Walker RD, Duerre JA (1975) S-adenosylhomocysteine metabolism in various species. Can J Biochem 53:312–319PubMedCrossRefGoogle Scholar
  152. Walker JD, Hnilica VS (1964) Developmental changes in arginine: X amiotransferase activity in streptomycin-producing strains of Streptomyces. Biochim Biophys Acta 89:473–482PubMedGoogle Scholar
  153. van Wezel G, Konig M, Mahr K, Nothaft H, Thomae AW, Bibb M, Titgemeyer F (2007) A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12:67–74Google Scholar
  154. van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55:624–636PubMedCrossRefGoogle Scholar
  155. van Wezel GP, White J, Young P, Postma PW, Bibb MJ (1997) Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI–galR family of regulatory genes. Mol Microbiol 23:537–549PubMedCrossRefGoogle Scholar
  156. White PJ, Young J, Hunter IS, Nimmo HG, Coggins JR (1990) The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor. Biochemical Journal 265:735–738Google Scholar
  157. Williams ST (1985) Oligotrophy in soil: fact or fiction. In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Academic Press, London, pp 81–110Google Scholar
  158. Wilson DJ, Xue YQ, Reynolds KA, Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wohlleben W, Mast Y, Reuthler J (2011) Regulation of nitrogen assimilation in streptomycetes and other actinobacteria. In: Dyson P (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, UK, pp 125–136Google Scholar
  160. Wong HC, Ting Y, Lin HC et al (1991) Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J Bacteriol 173:6849–6858Google Scholar
  161. Wray LV Jr, Fisher SH (1998) Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene 71:247–256CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranadaSpain

Personalised recommendations