Skip to main content

Physiology of Actinobacteria

  • Chapter
  • First Online:

Abstract

Actinomycetes are saprophytic bacteria that colonize a broad diversity of terrestrial and marine substrates in a constantly changing physical and chemical environment. They present unique metabolic capacities, but more importantly they represent one of the most prolific sources of bioactive secondary metabolites. This chapter will cover current information about the physiology of actinomycetes represented by a few species of Streptomyces from the perspective of their growth requirements and use of nutrient sources, as well as their impact in the plasticity of their primary metabolism in connection with the tight regulation of their secondary metabolism and their life cycle development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams CW, Fornwald JA, Schmidt FJ et al (1988) Gene organization and structure of the Streptomyces lividans gal operon. J bacterial 170:203–212

    Article  CAS  Google Scholar 

  • Albrecht A, Ottow JCG, Benckiser G et al (1997) Incomplete denitrification (NO and N2O) from nitrate by Streptomyces violaceoruber and S. nitrosporeus revealed by acetylene inhibition and 15N gas chromatography quadrupole mass spectrometry analyses. Naturwissenschaften 84:145–147

    Article  CAS  Google Scholar 

  • Alim S, Ring K (1976) Regulation of amino acid transport in growing cells of Streptomyces hydrogenans. II: correlation between transport capacity and growth rate in chemostat culture. Arch Microbiol 111:105–110

    Article  CAS  PubMed  Google Scholar 

  • Alves AM, Euverink GJ, Bibb MJ, Dijkhuizen L (1997) Identification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3 (2). Appl Environ Microbiol 63:956–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apel AK, Sola-Landa A, Rodríguez-García A, Martín JF (2007) Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. Microbiology 153:3527–3537

    Article  CAS  PubMed  Google Scholar 

  • Aretz W, Koller KP, Riess G (1989) Proteolytic enzymes from recombinant Streptomyces lividans TK24. FEMS Microbiol Lett 65:31–36

    Article  CAS  Google Scholar 

  • Arhin FF, Shareck F, Kluepfel D, Morosoli R (1994) Effects of disruption of xylanase-encoding genes on the xylanolytic system of Streptomyces lividans. J Bacteriol 176:4924–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson MR, Ninfa AJ (1998) Role of GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447

    Article  CAS  PubMed  Google Scholar 

  • Bahri SM, Ward M (1990) Regulation of a thermostable a-amylase of Streptomyces thermoviolaceus CUB74: maltotriose is the smallest inducer. Biochimie 72:8983–8895

    Article  Google Scholar 

  • Bascaran V, Hardisson C, Brana AF (1989) Regulation of nitrogen catabolic enzymes in Streptomyces clavuligerus. J Gen Microbiol 135:2465–2474

    Google Scholar 

  • Bascaran V, Hardisson C, Brana AF (1990) Regulation of extracellular protease production in Streptomyces clavuligerus. Appl Microbiol Biotechnol 34:208–213

    Article  CAS  Google Scholar 

  • Behal V, Cudlin J, Vanek Z (1969) Regulation of biosynthesis of secondary metabolites. Folia Microbiol III 14:117–120

    Article  CAS  Google Scholar 

  • Behrmann I, Hillemann D, Pühler A, Strauch E, Wohlleben W (1990) Overexpression of a Streptomyces viridochromogenes gene (glnII) encoding a glutamine synthetase similar to those of eucaryotes confers resistance against the antibiotic phosphinothricyl-alanyl-alanine. J Bacteriol 172:5326–5334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell JM, Falconer C, Colby J, Williams E (1987) CO metabolism in a thermophilic actinomycete, Streptomyces strains G26. J Gen Microbiol 133:3445–3456

    CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  PubMed  Google Scholar 

  • Bertram R, Schlicht M, Mahr K, Nothaft H, Saier MH Jr, Titgemeyer F (2004) In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). J Bacteriol 186:1362–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bibb MJ (2005) Regulation of secondary metabolism in Streptomycetes. Curr Op Microbiol 8:208–215

    Article  CAS  Google Scholar 

  • Bibb MJ, Jones GH, Joseph R et al (1987) The agarase gene (dagA) of Streptomyces coelicolor A3(2): affinity purification and characterization of the cloned gene product. J Gen Microbiol 133:2089–2096

    CAS  PubMed  Google Scholar 

  • Biro S, Chater KF (1987) Cloning of Streptomyces griseus and Streptomyces lividans genes for glycerol dissimilation. Gene 56:79–86

    Article  CAS  PubMed  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen I, Nielsen J (2008) Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion. J Biol Chem 283:25186–25199

    Article  CAS  PubMed  Google Scholar 

  • Bramwell H, Hunter IS, Coggins JR, Nimmo HG (1996) Proponyl-CoA carboxylase from Streptomyces coelicolor A3(2): purification of the enzyme, cloning of the ppc gene and overexpression of the protein in a streptomycete. Bioechem J 293:131–136

    Article  Google Scholar 

  • Brana AF, Manzanal MB, Hardisson C (1982) Characterization of intracellular polysaccharides of Streptomyces. Can J Microbiol 28:1320–1323

    Article  CAS  PubMed  Google Scholar 

  • Brautase T, Sekurova ON, Sletta H et al (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  Google Scholar 

  • Brawner ME, Matter SG, Babcock MJ, Westpheling J (1997) The Streptomyces galP1 promoter was a novel RNA polymerase recognition sequence and is transcribed by a new RNA polymerase in vitro. J Bacteriol 179:3222–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brückner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148

    Article  PubMed  Google Scholar 

  • Butler MJ, Deutscher J, Postma PW, Wilson TJ, Galinier A, Bibb MJ (1999) Analysis of a ptsH homologue from Streptomyces coelicolor A3(2). FEMS Microbiol Lett 177:279–288

    Article  CAS  PubMed  Google Scholar 

  • Campelo AB, Gil JA (2002) The candicidin gene cluster from Streptomyces griseus IMRU 3570. Microbiology 148:51–59

    Article  CAS  PubMed  Google Scholar 

  • Carmody M, Byrne B, Murphy B et al (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115

    Article  CAS  PubMed  Google Scholar 

  • Cen X-F, Wang J-Z, Zhao G-P et al (2016) Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor. Biochem Biophys Res Commun 471:510–514

    Article  CAS  PubMed  Google Scholar 

  • Chang PC, Kuo TC, Tsugita A, Lee YHM (1990) Extracellular metalloprotease gene of Streptomyces cacoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene 88:87–95

    Article  CAS  PubMed  Google Scholar 

  • Chater KF (1993) Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–711

    Article  CAS  PubMed  Google Scholar 

  • Chater KF, Biro S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Vining LC (1981) Nutrient utilization in actinomycetes. Induction of α-glucosidases in Streptomyces venezuelae. Can J Microbiol 27:639–645

    Article  CAS  PubMed  Google Scholar 

  • Dauter Z, Dauter M, Hemker J et al (1989) Crystallization ad preliminary analysis of glucose isomerase from Streptomyces albus. FEBS Lett 247:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dekleva ML, Strohl WR (1988) Biosynthesis of e-rhodomycinone from glucose by Streptomyces C5 and comparison with intermediary metabolism of other polyketide-producing streptomycetes. Can J Microbiol 34:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Díaz M, Esteban A, Fernández-Abalos JM et al (2005) The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151:2583–2592

    Article  PubMed  CAS  Google Scholar 

  • Drew SW, Demain AL (1977) Effect of primary metabolism on secondary metabolism. Annu Rev Microbiol 31:343–356

    Article  CAS  PubMed  Google Scholar 

  • Dyson P (ed) (2011) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk

    Google Scholar 

  • Elbein AD (1968) Trehalose phosphate synthesis in Streptomyces hygroscopicus: purification of guanosine diphosphate D-glucose:D-glucose-6-phosphate 1-glucosyl-trasnferase. J Bacteriol 96:1623–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elvin CM, Dixon NE, Rosenberg H (1986) Molecular cloning of the phosphate (inorganic) transport (pit) gene of Escherichia coli K12. Identification of the pit+ gene product and physical mapping of the pit–gor region of the chromosome Mol Gen Genet 204:477–484

    CAS  PubMed  Google Scholar 

  • Emes AV, Vining LC (1970) Partial purification and properties of L-phenylalanine ammonia-lyase from Streptomyces verticillatus. Can J Biochem 48:613–622

    Article  CAS  PubMed  Google Scholar 

  • Euverink GJW, Hessels GI, Vrijbloed JW et al (1992) Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J Gen Microbiol 138:2449–2457

    Article  CAS  PubMed  Google Scholar 

  • Fink D, Falke D, Wohlleben W, Engels A (1999) Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145:2313–2322

    Article  CAS  PubMed  Google Scholar 

  • Fink D, Weibschuch N, Reuther J, wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicor A3(2). Mol Microbiol 46:331–347

    Google Scholar 

  • Florova G, Denoya CD, Morgensten MR et al (1998) Cloning, expression and characterization of a type II 3-dehydroquinate dehydratase gene from Streptomyces hygroscopicus. Arch Biochem Biophys 350:298–306

    Article  CAS  PubMed  Google Scholar 

  • Fothergill JC, Guest JR (1977) Catabolism of L-Lysine by Pseudomonas aeruginosa. J Gen Microbiol 99:139–155

    Article  CAS  PubMed  Google Scholar 

  • Fritsch J, Gross W (1983) Studies on the transport of anions and zwitterions of acidic amino acids in Streptomyces hydrogenans. Z Naturforsch 38c:617–620

    CAS  Google Scholar 

  • Gadkari D, Schricker K, Acker G et al (1990) Streptomyces thermoautotrophicus sp. nov., a thermophilic CO- and H2-oxidizing obligate chemolithotroph. Appl Environ Microbiol 56:3727–3734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garbe T, Servos S, Hawkins A et al (1991) The Mycobacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol Gen Genet 228:385–392

    Article  CAS  PubMed  Google Scholar 

  • Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J, Virolle MJ (2006) Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 188:6269–6276

    Google Scholar 

  • Gil JA, Naharro G, Villanueva JR, Martin JF (1985) Characterization and regulation of p-aminobenzoic acid synthase from Streptomyces griseus. J Gen Microbiol 131:1279–1287

    CAS  PubMed  Google Scholar 

  • Godden B, Legon T, Helvenstein P, Penninckx M (1989) Regulation of the production of hemicellulytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J Gen Microbiol 135:285–292

    CAS  PubMed  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189–216

    Article  CAS  PubMed  Google Scholar 

  • Grafe U, Bormann EJ, Roth M, Neigenfind M (1986) Mutants of Streptomyces hygroscopicus deregulated in amylase and α-glucosidase formation. Biotechnol Lett 8:615–620

    Article  Google Scholar 

  • Gross W, Burkhardt K-L (1973) Multiple transport systems for basic amino acid transport in Streptomyces hydrogenans. Biochim Biophys Acta 298:437–445

    Article  CAS  PubMed  Google Scholar 

  • Gross W, Ring K (1971) Effect of chloramphenicol on active amino acid transport. FEBS Lett 4:319–322

    Article  Google Scholar 

  • Gubbens J, Janus M, Florea BI et al (2012) Identification of glucose kinase-dependent and—independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Mol Microbiol 86:1490–1507

    Article  CAS  PubMed  Google Scholar 

  • Gunnarsson N, Mortensen UH, Sosio M, Nielsen J (2004) Identification of the Entner-Doudoroff pathway in an antibiotic producing actinomycete species. Mol Microbiol 52:895–902

    Article  CAS  PubMed  Google Scholar 

  • Hagino H, Nakayama K (1968) Amino acid metabolism in microorganisms. IV: L-methionine decarboxylase produced by a Streptomyces strain. Agric Biol Chem 32:727–733

    CAS  Google Scholar 

  • Han L, Reynolds KA (1997) A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol 179:5157–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harth G, Maslesa-Galic S, Tullius MV, Horwitz MA (2005) All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol Microbiol 58:1157–1172

    Article  CAS  PubMed  Google Scholar 

  • Hesketh A, Chen WJ, Ryding J, Chang S, Bibb MJ (2007) The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol 8:R161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hey-Ferguson A, Mitchell M, Elbein AD (1973) Trehalose metabolism in germinating spores of Streptomyces hygroscopicus. J Bacteriol 116:1084–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hillemann D, Dammann T, Hillemann A, Wohlleben W (1993) Genetic and biochemical characterization of the two glutamine synthetases GSI and GSII of the phosphinothricyl-alanyl-alanine producer, Streptomyces viridochromogenes Tü494. J Gen Microbiol 139:1773–1783

    Article  CAS  PubMed  Google Scholar 

  • Hodgson DA (2000) primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  PubMed  Google Scholar 

  • Homerova D, Benada O, Kofronova O et al (1996) Disruption of a glycogen-branching enzyme gene, glgB, specifically affects the sporulation-associated phase of glycogen accumulation in Streptomyces aureofaciens. Microbiology 142:1201–1208

    Article  CAS  Google Scholar 

  • Hood DW, Heidstra R, Swoboda UK, Hodgson DA (1992) Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2): interaction between primary and secondary metabolism: a review. Gene 115:5–12

    Article  CAS  PubMed  Google Scholar 

  • Hoskisson PA, Sharples GP, Hobbs G (2003) The importance of amino acids as carbon sourcesfor Micromonospora echinospora (ATCC 15837). Lett Appl Microbiol 36:268–271

    Article  CAS  PubMed  Google Scholar 

  • Hu DS, Hood DW, Heidstra R, Hodgson DA (1999) The expression of the trpD, trpC and trpBA genes in Streptomyces coelicolor A3(2) is regulated by growth rate and growth phase but not by feedback repression. Mol Microbiol 32:869–880

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Ninfa AJ (2009) Reconstitution of Escherichia coli glutamine synthetase adenylyltransferase from N-terminal and C-terminal fragments of the enzyme. Biochemistry 48:415–423

    Article  CAS  PubMed  Google Scholar 

  • Johnson KG, Harrison BA, Schneider H et al (1988) Xylan-hydrolyzing enzymes from Streptomyces spp. Enzym Microb Technol 10:403–409

    Article  CAS  Google Scholar 

  • Katz E, Brown D, Hitchcock MJM et al (1984) Regulation of tryptophan metabolism and its relationship to actinomycin D synthesis. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical aspects of actinomycetes. Academic Press, New York, pp 325–342

    Chapter  Google Scholar 

  • Kern BA, Hendlin D, Inamine E (1980) L-lysine ε-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans. Antimicrob Agents Chemother 17:679–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern BA, Inamine E (1981) Cystathionine γ-lyase activity in the cephamycin C producer Streptomyces lactamdurans. J Antibiot 34:583–589

    Article  CAS  PubMed  Google Scholar 

  • van Keulen G, Jonkers HM, Claessen D, Dijkhuizen L, Wösten HAB (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185:1455–1458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Keulen G, Siebring J, Dijkhuizen L (2011) Central carbon metabolic pathways in Streptomyces. In: Dyson P (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, pp 105–123

    Google Scholar 

  • King AA, Chater KF (1986) The expression of the Escherichia coli lacZ gene in Streptomyces. J Gen Microbiol 132:1739–1752

    CAS  PubMed  Google Scholar 

  • Kirkpatrick JR, Godfrey OW (1973) The isolation and characterization of auxotrophs of the aspartic acid family from Streptomyces lipmanii. Folia Microbiol 18:90–101

    Article  CAS  Google Scholar 

  • Kitano K, Nozaki Y, Imada A (1985) Selective accumulation of unsulfated carbapenem antibiotics by sulfate transport-negative mutants of Streptomyces griseus subsp. cryophilus C-19393. Agric Biol Chem 49:677–684

    CAS  Google Scholar 

  • Kroening TA, Kendrick KE (1989) Cascading regulation of histidine ammonia-lyase activity from Streptomyces griseus. J Bacteriol 171:1100–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laluce C, Molinari R (1977) Selection of a chemically defined medium for submerged cultivation of Streptomyces aureofaciens with high extracellular caseinolytic activity. Biotechnol Bioeng 19:1863–1884

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee KJ (1993) Aspartate aminotransferase and tylosin biosynthesis in Streptomyces fradiae. Appl Environ Microbiol 59:822–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li CX, Florova G, Akopiants K, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472

    Article  CAS  PubMed  Google Scholar 

  • Lounes A, Lebrihi A, Benslimane C et al (1995) Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Can J microbial 31:304–311

    CAS  Google Scholar 

  • MacKenzie CR, Bilous D, Schneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madduri K, Stuttard C, Vining LC (1989) Lysine catabolism in Streptomyces spp is primarily through cadaverine: β-lactam producers also make α-aminoadipate. J Bacterial 171:299–302

    Article  CAS  Google Scholar 

  • Manteca A, Sanchez J (2009) Streptomyces development in colonies and soils. Appl Environ Microbiol 75:2920–2924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín JF, Demain AL (1980) Control of antibiotic synthesis. Microbiol Rev 44:230–251

    PubMed  PubMed Central  Google Scholar 

  • Martin MC, Schneider D, Bruton CJ et al (1977) A glgC gene essential only for the first two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2). J Bacteriol 179:7784–7789

    Article  Google Scholar 

  • McBride MJ, Ensign JC (1987) Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J Bacteriol 169:5002–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendelovitz S, Aharonowitz Y (1982) Regulation of cephamycin C synthesis, aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase by aspartic acid family amino acids in Streptomyces clavuligerus. Antimicrob Agents Chemother 21:74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez C, Brana AF, Manzanal MB, Hardisson C (1985) Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31:446–450

    Article  CAS  PubMed  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore SA, Ronimus RS, Roberson RS, Morgan HW (2002) The structure of a pyrophosphate-dependent phosphofructokinase from the Lyme disease spirochete Borrelia burgdorferi. Structure (Camb) 10:659–671

    Article  CAS  Google Scholar 

  • Mostafa SA (1979) production of L-asparaginase by Streptomyces karnatakensis and Streptomyces venezuelae. Zbl Bakt II Abt 134:429–436

    CAS  Google Scholar 

  • Murphy MF, Katz E (1980) regulatory control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase in Streptomyces antibioticus. Can J Microbiol 26:874–880

    Article  CAS  PubMed  Google Scholar 

  • Nagawasa T, Kanzaki H, Yamada H (1984) Cystathionine γ-lyase of Streptomyces phaeochromogenes: the occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem 252:5267–5273

    Google Scholar 

  • Nguyen KT, Frabcou F, Virolle MJ, Guerineau M (1997) Amylase and chitinase genes in Streptomyces lividans are regulated by reg1, a pleiotropic regulatory gene. J Bacteriol 179:6383–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KT, Nguyen LT, Behal V (1995) The induction of valine dehydrogenase activity from Streptomyces by l-valine is not repressed by ammonium. Biotechnol Lett 17:31–34

    Article  CAS  Google Scholar 

  • Nodwell JR, McGovern K, Losick R (1996) An oligopeptide permesase responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol Microbiol 22:881–893

    Article  CAS  PubMed  Google Scholar 

  • Novak J, Kopecky J, Vanek Z (1997) Nitrogen source regulates expression of alanine dehydrogenase isoenzymes in Streptomyces avermitilis in a chemically defined medium. Can J Microbiol 43:189–193

    Article  CAS  Google Scholar 

  • O’Hagan D, Rogers SV, Duffin GR, Reynolds KA (1995) The biosynthesis of monensin-A: thymine, β-aminoisobutyrate and methacrylate metabolism in Streptomyces cinnamonensis. J Antibiot 48:1280–1287

    Article  PubMed  Google Scholar 

  • Ohe T, Watanabe Y (1977) Effect of glucose and ammonium on the formation of xanthine dehydrogenase of Streptomyces sp. (Studies on the control of purine base metabolism in Streptomyces. Part II). Agric Biol Chem 41:1161–1170

    CAS  Google Scholar 

  • Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292

    Article  CAS  PubMed  Google Scholar 

  • Paradkar AS, Stuttard C, vining LC (1993) Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. J Gen Microbiol 139:687–694

    Google Scholar 

  • Piette A, Derouaux A, Gerkens P et al (2005) From dormant to germinating spores of Streptomyces coelicolor A3(2): new perspectives from the crp null mutant. J Proteome Res 4:1699–1708

    Article  CAS  PubMed  Google Scholar 

  • Pokorny M, Lj V, Turk V et al (1979) Streptomyces rimosus extracellular proteases. 1: Characterization and evaluation of various crude preparartions. Eur J Appl Microbiol 8:81–90

    Article  Google Scholar 

  • Potrykus K, Cashel M (2008) ppGpp: still magical? Rev Microbiol 62:35–51

    Article  CAS  Google Scholar 

  • Pullan T, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175. doi:10.1186/1471-2164-12-175

  • Rao NN, Torriani A (1990) Molecular aspects of phosphate transport in Escherichia coli. Mol Microbiol 4:1083–1090

    Article  PubMed  Google Scholar 

  • Rascher A, Hu Z, Viswanathan N et al (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol Lett 218:223–230

    Article  CAS  PubMed  Google Scholar 

  • Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146

    Article  CAS  PubMed  Google Scholar 

  • Reynolds KA, O’Hagan D, Gani D, Robinson JA (1988) Butyrate metabolism in streptomycetes. Characterization of an intramolecular vicinal interchange rearrangement linking isobutyrate and butyrate in Streptomyces cinnamonensis. J Chem Soc Perkin Trans 1:3195–3207

    Google Scholar 

  • Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ring K, Foit B, Ehle H (1977) Stimulation of active uptake of 2-aminobutyric acid in Streptomyces hydrogenans by exogenous dibutyryl cyclic AMP. FEMS Microbiol Lett 2:27–30

    Article  CAS  Google Scholar 

  • Rius N, Maeda K, Demain AL (1996) Induction of l-lysine ε-aminotransferase by l-lysine in Streptomyces clavuligerus, producer of cephalosporins. FEMS Microbiol Lett 144:207–211

    CAS  PubMed  Google Scholar 

  • Robbins PW, Overbye K, Albright C et al (1992) Cloning and high-level expression of chitinase-encoding gene of Streptomyces plicatus. Gene 111:69–76

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF (2007) Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics 7:2410–2429

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-García A., Sola-Landa A, Apel K., Santos-Beneit and Martín J.F. ( 2009) Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucl. Acids Res 37: 3230-3242

    Article  CAS  Google Scholar 

  • Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg H, Gerdes RG, Harold FM (1979) Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. Biochem J 178:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72:7132–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier MH Jr, Reizer J (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol 13:755–764

    Google Scholar 

  • Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enz Microbial Technol 31:895–906

    Article  CAS  Google Scholar 

  • Santos-Beneit F, Rodríguez-García A, Franco-Domínguez E, Martín JF (2008) Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154:2356–2370

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Nakashima S, Taniyama H (1977) Biosynthesis of streptothricin antibiotics. VI: mechanisms of β-lysine and its peptide formation. Chem Pharm Bull 25:3210–3217

    Article  CAS  Google Scholar 

  • Schloesser A, Kampers T, Schrempf H (1997) The Streptomyces ATP binding component MsiK assists in cellobiose and maltose transport. J Bacteriol 179:2092–2095

    Article  CAS  Google Scholar 

  • Seno ET, Chater KF (1983) Glycerol catabolic enzymes and their regulation in wild-type and mutant strains of Streptomyces coelicolor A3(2). J Gen Microbiol 129:1403–1413

    CAS  PubMed  Google Scholar 

  • Shapiro S, Vining LC (1984) Suppression of nitrate utilization by ammonium and its relationship to chloramphenicol production in Streptomyces venezuelae. Can J Microbiol 30:798–804

    Article  CAS  PubMed  Google Scholar 

  • Shin H-S, Lee KJ (1986) Regulation of extracellular alkaline protease biosynthesis in a strain of Streptomyces sp. Kor. J Microbiol 24:32–37

    CAS  Google Scholar 

  • Smanski MJ, Peterson RM, Rajski SR, Shen B (2009) Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob Agents Chemother 53:1299–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DDS, Wood NJ, Hodgson DA (1995) Interaction between primary and secondary metabolism in Streptomyces coelicolor A3(2): role of pyrroline-5-carboxylate dehydrogenase. Microbiology 141:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Sola-Landa A, Moura RS, Martín JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF (2008) Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res 36:1358–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF (2005) Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385

    Article  CAS  PubMed  Google Scholar 

  • Takano E (2006) γ-butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr Op Microbiol 9:287–294

    Article  CAS  Google Scholar 

  • Tiffert Y, Franz-Wachtel M, Fladerer C et al (2011) Proteomic analysis of the GlnR-mediated response to nitrogen limitation in Streptomyces coelicolor M145. Appl Microbiol Biotechnol 89:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Biol 67:861–880

    CAS  Google Scholar 

  • Titgemeyer F, Reizer J, Reizer A, Saier MH Jr (1994) Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology 140:2349–2354

    Google Scholar 

  • Tsuyuki H, Kajiwara K, Fujita A et al (1991) Purification and characterization of Streptomyces griseus metalloendopeptidases I and II. J Biochem 110:339–344

    Article  CAS  PubMed  Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162

    Article  CAS  PubMed  Google Scholar 

  • Udaka S (1966) Pathway specific patter of control of arginine biosynthesis in bacteria. J Bacteriol 91:617–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uwajima T, Yoshikawa N, Terada O (1973) Production of aminopeptidase and carboxypeptidase by Streptomyces peptidofaciens. Agric Biol Chem 37:1517–1523

    Article  CAS  Google Scholar 

  • Van Wezel G, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333

    Article  PubMed  CAS  Google Scholar 

  • Vancura A, Rezanka T, Marsalek J et al (1987) Effect of ammonium on the composition of fatty acids in Streptomyces fradiae, producer of tylosin. FEMS Microbiol Lett 48:357–260

    Article  CAS  Google Scholar 

  • Vancura A, Rezanka T, Marsalek J et al (1988) Metabolism of threonine and fatty acids and tylosin biosynthesis in Streptomyces fradiae. FEMS Microbiol Lett 49:411–415

    Article  CAS  Google Scholar 

  • Virolle MJ, Long CM, Chang S, Bibb MJ (1988) Cloning, characterization and regulation of an α-amylase gene from Streptomyces venezuelae. Gene 74:321–334

    Article  CAS  PubMed  Google Scholar 

  • Vorisek J, Powell AJ, Vanek Z (1969) regulation of biosynthesis of secondary metabolites. IV: Purification and properties of phosphoenolpyruvate carboxylase in Streptomyces aureofaciens. Folia Microbiol 14:398–405

    Article  CAS  Google Scholar 

  • Vosbeck KD, Greenberg BD, Ochoa MS et al (1978) Proteolytic enzymes of the K-1 strain of Streptomyces griseus obtained from a commercial preparation (pronase). J Biol Chem 253:257–260

    CAS  PubMed  Google Scholar 

  • Walker RD, Duerre JA (1975) S-adenosylhomocysteine metabolism in various species. Can J Biochem 53:312–319

    Article  CAS  PubMed  Google Scholar 

  • Walker JD, Hnilica VS (1964) Developmental changes in arginine: X amiotransferase activity in streptomycin-producing strains of Streptomyces. Biochim Biophys Acta 89:473–482

    CAS  PubMed  Google Scholar 

  • van Wezel G, Konig M, Mahr K, Nothaft H, Thomae AW, Bibb M, Titgemeyer F (2007) A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3(2). J Mol Microbiol Biotechnol 12:67–74

    Google Scholar 

  • van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F (2005) GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2). Mol Microbiol 55:624–636

    Article  PubMed  CAS  Google Scholar 

  • van Wezel GP, White J, Young P, Postma PW, Bibb MJ (1997) Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacI–galR family of regulatory genes. Mol Microbiol 23:537–549

    Article  PubMed  Google Scholar 

  • White PJ, Young J, Hunter IS, Nimmo HG, Coggins JR (1990) The purification and characterization of 3-dehydroquinase from Streptomyces coelicolor. Biochemical Journal 265:735–738

    Google Scholar 

  • Williams ST (1985) Oligotrophy in soil: fact or fiction. In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Academic Press, London, pp 81–110

    Google Scholar 

  • Wilson DJ, Xue YQ, Reynolds KA, Sherman DH (2001) Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol 183:3468–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wohlleben W, Mast Y, Reuthler J (2011) Regulation of nitrogen assimilation in streptomycetes and other actinobacteria. In: Dyson P (ed) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, UK, pp 125–136

    Google Scholar 

  • Wong HC, Ting Y, Lin HC et al (1991) Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J Bacteriol 173:6849–6858

    Google Scholar 

  • Wray LV Jr, Fisher SH (1998) Cloning and nucleotide sequence of the Streptomyces coelicolor gene encoding glutamine synthetase. Gene 71:247–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Genilloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Genilloud, O. (2017). Physiology of Actinobacteria. In: Wink, J., Mohammadipanah, F., Hamedi, J. (eds) Biology and Biotechnology of Actinobacteria. Springer, Cham. https://doi.org/10.1007/978-3-319-60339-1_7

Download citation

Publish with us

Policies and ethics