Advertisement

The Cellular Structure of Actinobacteria

  • Javad HamediEmail author
  • Naghmeh Poorinmohammad
Chapter

Abstract

Actinobacteria is a unique group of microorganisms, and they possess one of the most complex cellular structures among bacteria. Their differences with other bacteria in terms of morphological and physiological properties have been shown by various interesting microbiological studies. Before the development of molecular biology, there are many arguments on their resemblance to fungi cells; however, their prokaryotic and bacterial nature has been revealed, many years ago. During 1950–1970s, the golden era of antibiotics and the great metabolic potentials of these bacteria, mainly their long-established role in production of antibiotics, have attracted the attentions. Study of the basic biological concepts of actinobacteria is to some extent underestimated in comparison with the information available from the biotechnological potential of these bacteria. Here we have summarized the basic concepts related to the cellular structure of actinobacterial members to help balance the basic information. This data can also help to better understand the functions and behavior of these bacteria.

References

  1. Alderwick LJ et al (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281(23):15653–15661CrossRefPubMedGoogle Scholar
  2. Alvarez HM et al (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165(6):377–386CrossRefPubMedGoogle Scholar
  3. Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3(3):214–224CrossRefPubMedGoogle Scholar
  4. Awasti N et al (2016) Probiotic and functional characterization of bifidobacteria of Indian human origin. J Appl Microbiol 120:1021–1032CrossRefPubMedGoogle Scholar
  5. Bansal-Mutalik R, Nikaido H (2014) Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci 111(13):4958–4963CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bayan N et al (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104(1):55–67CrossRefPubMedGoogle Scholar
  7. Bowden GH (1996) Actinomyces, Propionibacterium propionicus, and streptomyces. University of Texas Medical Branch at Galveston, GalvestonGoogle Scholar
  8. Braun V et al (2015) The bacterial cell envelope: structure, function, and infection interface. Int J Med Microbiol 305(2):175CrossRefPubMedGoogle Scholar
  9. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64(1):29–63CrossRefPubMedGoogle Scholar
  10. Celler K et al (2013) Multidimensional view of the bacterial cytoskeleton. J Bacteriol 195(8):1627–1636CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chowdhury C et al (2014) Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 78(3):438–468CrossRefPubMedPubMedCentralGoogle Scholar
  12. Crellin PK et al (2013) Metabolism of plasma membrane lipids in Mycobacteria and Corynebacteria, Lipid Metabolism. INTECH Open Access Publisher. doi: 10.5772/52781
  13. Daffé M (2015) The cell envelope of tubercle bacilli. Tuberculosis 95:S155–S158CrossRefPubMedGoogle Scholar
  14. Diagne N et al (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. Bio Med Res Int 2013:1–9Google Scholar
  15. Dobritsa SV et al (2001) Hopanoid lipids in Frankia: identification of squalene-hopene cyclase gene sequences. Can J Microbiol 47(6):535–540CrossRefPubMedGoogle Scholar
  16. Ensign JC (1978) Formation, properties, and germination of actinomycete spores. Annu Rev Microbiol 32(1):185–219CrossRefPubMedGoogle Scholar
  17. Fuchino K et al (2013) Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proc Natl Acad Sci 110(21):E1889–E1897CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ganju P, Iyengar M (1974) Micromorphology of some sclerotial actinomycetes and development of their sclerotia. Microbiology 82(1):35–48Google Scholar
  19. Gaspar AH, Ton-That H (2006) Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J Bacteriol 188(4):1526–1533CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297(6):401–415CrossRefPubMedGoogle Scholar
  21. Girard G et al (2013) A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open biology 3(10):130073CrossRefPubMedPubMedCentralGoogle Scholar
  22. Graumann PL (2009) Dynamics of bacterial cytoskeletal elements. Cell Motil Cytoskeleton 66(11):909–914CrossRefPubMedGoogle Scholar
  23. Greiner-Mai E et al (1988) Taxonomic revision of the genus Saccharomonospora and description of Saccharomonospora glauca sp. nov. Int J Syst Evol Microbiol 38(4):398–405Google Scholar
  24. Greiner-Mai E et al (1987) Morphological and biochemical characterization and emended descriptions of thermophilic actinomycetes species. Syst Appl Microbiol 9(1–2):97–109CrossRefGoogle Scholar
  25. Grzegorzewicz AE et al (2016) Assembling of the Mycobacterium tuberculosis Cell Wall Core. J Biol Chem. doi:10.1074/jbc.M116.739227Google Scholar
  26. Guerrero R (2000) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  27. Guo JK et al (2009) Streptomyces plumbiresistens sp. nov., a lead-resistant actinomycete isolated from lead-polluted soil in north-west China. Int J Syst Evol Microbiol 59(6):1326–1330CrossRefPubMedGoogle Scholar
  28. Gurovic MSV et al (2013) Micromonosporaschwarzwaldensis sp. nov., a producer of telomycin, isolated from soil. Int J Syst Evol Microbiol 63(10):3812–3817CrossRefGoogle Scholar
  29. Hasegawa T et al (1978) New Genus of the Actinomycetales: actinosynnema gen. nov. Int J Syst Evol Microbiol 28(2):304–310Google Scholar
  30. Higgins M et al (1967) Flagellated actinomycetes. J Bacteriol 93(4):1446–1451PubMedPubMedCentralGoogle Scholar
  31. Hoyles L, McCartney AL (2012) Mobiluncus in Bergey’s Manual of Systematics of Archaea and Bacteria, Springer: 126–139Google Scholar
  32. Jones D, Keddie RM (2006) The genus Arthrobacter. The prokaryotes. Springer, New York, pp 945–960CrossRefGoogle Scholar
  33. Kalakoutskii L, Agre NS (1976) Comparative aspects of development and differentiation in actinomycetes. Bacteriol Rev 40(2):469PubMedPubMedCentralGoogle Scholar
  34. Kerfeld CA et al (2010) Bacterial microcompartments. Microbiology 64(1):391CrossRefGoogle Scholar
  35. Kumar V et al (2014) An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss. Front Microbiol 5:446CrossRefPubMedPubMedCentralGoogle Scholar
  36. Land M et al (2009) Complete genome sequence of Actinosynnema mirum type strain (101 T). Stand Genomic Sci 1(1):46CrossRefPubMedPubMedCentralGoogle Scholar
  37. Letek M et al (2012) Cytoskeletal proteins of actinobacteria. Int J Cell Biol 2012:1–10CrossRefGoogle Scholar
  38. Li Q et al (2016) Cultural, physiological, and biochemical identification of actinobacteria in Actinobacteria_Basics and Biotechnologial Application, INTECH Open Aaccess Publisher.doi: 10.5772/61462
  39. Lin L, Thanbichler M (2013) Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton 70(8):409–423CrossRefPubMedGoogle Scholar
  40. Locci R (2006) Actinomyces spores. eLSGoogle Scholar
  41. Ludwig W et al (2012) Road map of the phylum Actinobacteria. Bergey’s manual® of systematic bacteriology. Springer, New York, pp 1–28CrossRefGoogle Scholar
  42. Mac Faddin JF (1985) Media for isolation-cultivation-identification-maintenance of medical bacteria. Williams & Wilkins, BaltimoreGoogle Scholar
  43. Matias F et al (2009) Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can J Microbiol 55(7):790–800CrossRefPubMedGoogle Scholar
  44. Mayilraj S et al (2006) Kitasatospora sampliensis sp. nov., a novel actinobacterium isolated from soil of a sugar-cane field in India. Int J Syst Evol Microbiol 56(3):519–522CrossRefPubMedGoogle Scholar
  45. Mishra A et al (2010) The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol 77(4):841–854PubMedPubMedCentralGoogle Scholar
  46. Nakajima Y et al (1999) Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Evol Microbiol 49(4):1761–1767Google Scholar
  47. Nalin R et al (2000) High hopanoid/total lipids ratio in Frankia mycelia is not related to the nitrogen status. Microbiology 146(11):3013–3019CrossRefPubMedGoogle Scholar
  48. Niederweis M et al (2010) Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18(3):109–116CrossRefPubMedPubMedCentralGoogle Scholar
  49. Niederweis M et al (1999) Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol Microbiol 33(5):933–945CrossRefPubMedGoogle Scholar
  50. O'Leary WM (1989) Practical handbook of microbiology. CRC press, Boca RatonGoogle Scholar
  51. Pallerla SR et al (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243(1):133–140CrossRefPubMedGoogle Scholar
  52. Palleroni NJ (1979) New species of the genus Actinoplanes, Actinoplanes ferrugineus. Int J Syst Evol Microbiol 29(1):51–55Google Scholar
  53. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci 105(11):4376–4380CrossRefPubMedPubMedCentralGoogle Scholar
  54. Peyret J et al (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9(1):97–109CrossRefPubMedGoogle Scholar
  55. Poger D, Mark AE (2013) The relative effect of sterols and hopanoids on lipid bilayers: when comparable is not identical. J Phys Chem B 117(50):16129–16140CrossRefPubMedGoogle Scholar
  56. Poralla K et al (2000) Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3 (2). FEMS Microbiol Lett 189(1):93–95CrossRefPubMedGoogle Scholar
  57. Potekhina N et al (1982) Isolation of lipoteichoic acid from Streptomyces levoris. Mikrobiologiia 52(3):434–437Google Scholar
  58. Puech V et al (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147(5):1365–1382CrossRefPubMedGoogle Scholar
  59. Qinyuan Li XC, Jiang Y, Jiang C (2016) Morphological identification of actinobacteria. Actinobacteria - Basics and Biotechnological Applications. DD Dhanasekaran, InTechGoogle Scholar
  60. Rahman O et al (2009) Macroamphiphilic components of thermophilic actinomycetes: identification of lipoteichoic acid in Thermobifida fusca. J Bacteriol 191(1):152–160CrossRefPubMedGoogle Scholar
  61. Ribeiro MG et al (2008) Nocardiosis: an overview and additional report of 28 cases in cattle and dogs. Rev Inst Med Trop Sao Paulo 50(3):177–185CrossRefPubMedGoogle Scholar
  62. Rosenberg E et al (2014) The Prokaryotes: actinobacteria. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  63. Rousseaux S et al (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222CrossRefPubMedGoogle Scholar
  64. Roy S et al (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Botany 85(3):237–251Google Scholar
  65. Sáenz JP et al (2015) Hopanoids as functional analogues of cholesterol in bacterial membranes. Proc Natl Acad Sci 112(38):11971–11976CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schluesener D et al (2005) Mapping the membrane proteome of Corynebacterium glutamicum. Proteomics 5(5):1317–1330CrossRefPubMedGoogle Scholar
  67. Seidel M et al (2007) Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology 17(2):210–219CrossRefPubMedGoogle Scholar
  68. Seipke RF, Loria R (2009) Hopanoids are not essential for growth of Streptomyces scabies 87-22. J Bacteriol 191(16):5216–5223CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ser H-L et al (2015) Presence of antioxidative agent, Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-in newly isolated Streptomyces mangrovisoli sp. nov. Front Microbiol. 6:854Google Scholar
  70. Shively JM (2006) Complex intracellular structures in prokaryotes. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  71. Silhavy TJ et al (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414CrossRefPubMedPubMedCentralGoogle Scholar
  72. Song H et al (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88(6):526–544CrossRefPubMedPubMedCentralGoogle Scholar
  73. Spiegel CA, Roberts M (1984) Mobiluncus gen. nov., Mobiluncus curtisii subsp. curtisii sp. nov., Mobiluncus curtisii subsp. holmesii subsp. nov., and Mobiluncus mulieris sp. nov., curved rods from the human vagina. Int J Syst Evol Microbiol 34(2):177–184Google Scholar
  74. Subramanian N (2016) Studies on the production of sclerotia by antibiotic producing chainiaeGoogle Scholar
  75. Sutcliffe IC et al (2010) The rhodococcal cell envelope: composition, organisation and biosynthesis. Biology of Rhodococcus. Springer, Heidelberg, pp 29–71Google Scholar
  76. Taddei A et al (2006) Isolation and identification of Streptomyces spp. from Venezuelan soils: Morphological and biochemical studies. I. Microbiol Res 161(3):222–231CrossRefPubMedGoogle Scholar
  77. Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50(4):1429–1438CrossRefPubMedGoogle Scholar
  78. Tul’skaya E et al (2011) Teichuronic and teichulosonic acids of actinomycetes. Biochem Mosc 76(7):736–744CrossRefGoogle Scholar
  79. Welander PV et al (2009) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE-1. J Bacteriol 191(19):6145–6156CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yanagawa R, Honda E (1976) Presence of pili in species of human and animal parasites and pathogens of the genus corynebacterium. Infect Immun 13(4):1293–1295PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of Science, University of TehranTehranIran
  2. 2.Microbial Technology and Products Research CenterUniversity of TehranTehranIran

Personalised recommendations