Post-genomic Studies and Systems Biology of Actinobacteria: A Brief Overview

  • Naghmeh Poorinmohammad
  • Javad HamediEmail author


We are living the era where information may no longer be a bottleneck in the path to understand the complex biological systems. The namely post-genomic era brought with it the availability of automatic miniaturized assays able to generate omics data types, from complete genomes to proteomes, transcriptome, and metabolome data of different organisms from various taxa. As the output to this approach, different computational and in silico tools have been developed to process and mine knowledge from the large volume of biological data generated, among which the systems-scale knowledge mining concept has recently become the focus of many post-genomic researches. Actinobacterial omics data are being increasingly produced and explored in order to derive the omics-scale knowledge required for optimizing biotechnological potentials and productions as well as uncovering the pathogenicity mechanisms of these bacteria for therapeutic approaches. Accordingly, this review highlights the current status of actinobacterial omics data and systems biological research with the main focus being on the optimization of biotechnological potentials of this important bacterial cell factory.


  1. Aggarwal S, Karimi I, Lee DY (2011) Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies. Mol BioSyst 7(11):3122–3131CrossRefPubMedGoogle Scholar
  2. Aigle B, Lautru S, Spiteller D, Dickschat JS, Challis GL, Leblond P, Pernodet J-L (2014) Genome mining of Streptomyces ambofaciens. J Ind Microbiol Biotechnol 41(2):251–263CrossRefPubMedGoogle Scholar
  3. Anand S, Prasad MR, Yadav G, Kumar N, Shehara J, Ansari MZ, Mohanty D (2010) SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic acids Res 38:W487–W496CrossRefPubMedPubMedCentralGoogle Scholar
  4. Angolini CF, Gonçalves AB, Sigrist R, Paulo BS, Samborskyy M, Cruz PL, Vivian AF, Schmidt EM, Eberlin MN, Araújod WL (2016) Genome Mining of Endophytic Streptomyces wadayamensis Reveals High Antibiotic Production Capability. J Braz Chem Soc 27(8):1465–1475Google Scholar
  5. Balázsi G, Igoshin OA, Gennaro ML (2013) The transcriptional regulatory network of mycobacterium tuberculosis. In: Bacterial gene regulation and transcriptional networks, vol 185–198Google Scholar
  6. Baltz RH (2011) Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 38(6):657–666CrossRefPubMedGoogle Scholar
  7. Barzantny H, Schröder J, Strotmeier J, Fredrich E, Brune I, Tauch A (2012) The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J Biotechnol 159(3):235–248CrossRefPubMedGoogle Scholar
  8. Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 13(2):159–168CrossRefPubMedGoogle Scholar
  9. Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J (2007) GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 8(5):1CrossRefGoogle Scholar
  10. Bilyk O, Luzhetskyy A (2016) Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 42:98–107CrossRefPubMedGoogle Scholar
  11. Blum RH, Carter SK, Agre K (1973) A clinical review of bleomycin—a new antineoplastic agent. Cancer 31(4):903–914CrossRefPubMedGoogle Scholar
  12. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7(6):395–403CrossRefPubMedGoogle Scholar
  13. Cano-Prieto C, García-Salcedo R, Sánchez-Hidalgo M, Braña AF, Fiedler HP, Méndez C, Salas JA, Olano C (2015) Genome Mining of Streptomyces sp. Tü 6176: characterization of the nataxazole biosynthesis pathway. ChemBioChem 16(10):1461–1473CrossRefPubMedGoogle Scholar
  14. Chen L, Lai Y-M, Yang Y-L, Zhao X (2016) Genome mining reveals the biosynthetic potential of the marine-derived strain Streptomyces marokkonensis M10. Synthetic Syst Biotechnol 1(1):56–65CrossRefGoogle Scholar
  15. Chou WK, Fanizza I, Uchiyama T, Komatsu M, Ikeda H, Cane DE (2010) Genome mining in Streptomyces avermitilis: cloning and characterization of SAV_76, the synthase for a new sesquiterpene, avermitilol. J Am Chem Soc 132(26):8850–8851CrossRefPubMedPubMedCentralGoogle Scholar
  16. Contador C, Rodríguez V, Andrews B, Asenjo J (2015) Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation. Antonie Van Leeuwenhoek 108(5):1075–1090CrossRefPubMedGoogle Scholar
  17. D’Huys P-J, Lule I, Vercammen D, Anné J, Van Impe JF, Bernaerts K (2012) Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. J Biotechnol 161(1):1–13CrossRefPubMedGoogle Scholar
  18. de Jong A, Pietersma H, Cordes M, Kuipers OP, Kok J (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genomics 13(1):299CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O'Hagan D (2014) Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by Genome Mining. ChemBioChem 15(3):364–368CrossRefPubMedGoogle Scholar
  20. Dohra H, Suzuki T, Inoue Y, Kodani S (2016) Draft genome sequence of Planomonospora sphaerica JCM 9374, a rare actinomycete. Genome Announc 4(4):e00779–e00716CrossRefPubMedPubMedCentralGoogle Scholar
  21. Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, Wang M, Bandeira N, Moore BS, Dorrestein PC (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22(4):460–471CrossRefPubMedPubMedCentralGoogle Scholar
  22. El-Semman IE, Karlsson FH, Shoaie S, Nookaew I, Soliman TH, Nielsen J (2014) Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst Biol 8(1):1CrossRefGoogle Scholar
  23. Eustáquio AS, Nam SJ, Penn K, Lechner A, Wilson MC, Fenical W, Jensen PR, Moore BS (2011) The discovery of salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. ChemBioChem 12(1):61–64CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fang Y, Wang S, Liu S, Jiao Y (2015) Discovery a novel organic solvent tolerant esterase from Salinispora arenicola CNP193 through genome mining. Int J Biol Macromol 80:334–340CrossRefPubMedGoogle Scholar
  25. Faria JP, Overbeek R, Xia F, Rocha M, Rocha I, Henry CS (2014) Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models. Brief Bioinform 15(4):592–611CrossRefPubMedGoogle Scholar
  26. Fleige C, Meyer F, Steinbüchel A (2016) Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin. Appl Environ Microbiol 82(11):3410–3419CrossRefPubMedPubMedCentralGoogle Scholar
  27. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Von Mering C (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(D1):D808–D815CrossRefPubMedGoogle Scholar
  28. Freitag A, Méndez C, Salas JA, Kammerer B, Li S-M, Heide L (2006) Metabolic engineering of the heterologous production of clorobiocin derivatives and elloramycin in Streptomyces coelicolor M512. Metab Eng 8(6):653–661CrossRefPubMedGoogle Scholar
  29. Gomez-Escribano JP, Alt S, Bibb MJ (2016) Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products. Mar Drugs 14(4):78CrossRefPubMedCentralGoogle Scholar
  30. Horn H, Cheng C, Edrada-Ebel R, Hentschel U, Abdelmohsen UR (2015) Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges. Mar Genomics 24:285–287CrossRefPubMedGoogle Scholar
  31. Hu Y, Chou WK, Hopson R, Cane DE (2011) Genome mining in Streptomyces clavuligerus: Expression and biochemical characterization of two new cryptic sesquiterpene synthases. Chem Biol 18(1):32–37CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huang D, Wen J, Wang G, Yu G, Jia X, Chen Y (2012) In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biotechnol 94(3):637–649CrossRefPubMedGoogle Scholar
  33. Iftime D, Kulik A, Härtner T, Rohrer S, Niedermeyer THJ, Stegmann E, Weber T, Wohlleben W (2016) Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365. J Ind Microbiol Biotechnol 43(2–3):277–291CrossRefPubMedGoogle Scholar
  34. Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58(3):781–785PubMedPubMedCentralGoogle Scholar
  35. Ikeda M, Ozaki A, Katsumata R (1993) Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli. Appl Microbiol Biotechnol 39(3):318–323CrossRefPubMedGoogle Scholar
  36. Jha AK, Pokhrel AR, Chaudhary AK, Park S-W, Cho WJ, Sohng JK (2014) Metabolic engineering of rational screened Saccharopolyspora spinosa for the enhancement of spinosyns A and D production. Mol Cells 37(10):727PubMedPubMedCentralGoogle Scholar
  37. Jung WS, Kim E, Yoo YJ, Ban YH, Kim EJ, Yoon YJ (2014) Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae. Appl Microbiol Biotechnol 98(8):3701–3713CrossRefPubMedGoogle Scholar
  38. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kim M, Sang Yi J, Kim J, Kim JN, Kim MW, Kim BG (2014) Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3 (2). Biotechnol J 9(9):1185–1194CrossRefPubMedGoogle Scholar
  40. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597CrossRefPubMedGoogle Scholar
  41. Komaki H, Ichikawa N, Hosoyama A, Fujita N, Igarashi Y (2015) Draft Genome Sequence of Streptomyces sp. TP-A0356, a Producer of Yatakemycin. Genome Announc 3(6):e01446–e01415PubMedPubMedCentralGoogle Scholar
  42. Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1(5):265–269CrossRefPubMedGoogle Scholar
  43. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78(3–4):399–405CrossRefPubMedGoogle Scholar
  44. Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8(3):240–252CrossRefPubMedGoogle Scholar
  45. Li MH, Ung PM, Zajkowski J, Garneau-Tsodikova S, Sherman DH (2009) Automated genome mining for natural products. BMC Bioinformatics 10(1):1CrossRefGoogle Scholar
  46. Licona-Cassani C, Marcellin E, Quek L-E, Jacob S, Nielsen LK (2012) Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Antonie Van Leeuwenhoek 102(3):493–502CrossRefPubMedGoogle Scholar
  47. Lin X, Hopson R, Cane DE (2006) Genome Mining in Streptomyces coelicolor: Molecular Cloning and Characterization of a New Sesquiterpene Synthase. J Am Chem Soc 128(18):6022–6023CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu B, Zhou C, Li G, Zhang H, Zeng E, Liu Q, Ma Q (2016) Bacterial regulon modeling and prediction based on systematic cis regulatory motif analyses. Sci Rep 6:23030CrossRefPubMedPubMedCentralGoogle Scholar
  49. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103(42):15582–15587CrossRefPubMedPubMedCentralGoogle Scholar
  50. Medema MH, Trefzer A, Kovalchuk A, van den Berg M, Müller U, Heijne W, Wu L, Alam MT, Ronning CM, Nierman WC (2010) The sequence of a 1.8-Mb bacterial linear plasmid reveals a rich evolutionary reservoir of secondary metabolic pathways. Genome Biol Evol 2:212–224CrossRefPubMedPubMedCentralGoogle Scholar
  51. Myles DC (2003) Novel biologically active natural and unnatural products. Curr Opin Biotechnol 14(6):627–633CrossRefPubMedGoogle Scholar
  52. Nakano C, Kudo F, Eguchi T, Ohnishi Y (2011) Genome Mining Reveals Two Novel Bacterial Sesquiterpene Cyclases:(−)-Germacradien-4-ol and (−)-epi-α-Bisabolol Synthases from Streptomyces citricolor. ChemBioChem 12(15):2271–2275CrossRefPubMedGoogle Scholar
  53. Nanthini J, Chia K-H, Thottathil GP, Taylor TD, Kondo S, Najimudin N, Baybayan P, Singh S, Sudesh K (2015) Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia. J Biotechnol 214:47–48CrossRefPubMedGoogle Scholar
  54. Niraula NP, Kim S-H, Sohng JK, Kim E-S (2010) Biotechnological doxorubicin production: pathway and regulation engineering of strains for enhanced production. Appl Microbiol Biotechnol 87(4):1187–1194CrossRefPubMedGoogle Scholar
  55. Novichkov PS, Brettin TS, Novichkova ES, Dehal PS, Arkin AP, Dubchak I, Rodionov DA (2012) RegPrecise web services interface: programmatic access to the transcriptional regulatory interactions in bacteria reconstructed by comparative genomics. Nucleic Acids Res 40(W1):W604–W608CrossRefPubMedPubMedCentralGoogle Scholar
  56. Oberhardt MA, Palsson BØ, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5(1):320PubMedPubMedCentralGoogle Scholar
  57. Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7(3):242–256CrossRefPubMedPubMedCentralGoogle Scholar
  58. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25(4):447–453CrossRefPubMedGoogle Scholar
  59. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248CrossRefPubMedPubMedCentralGoogle Scholar
  60. Qin S, Feng W-W, Xing K, Bai J-L, Yuan B, Liu W-J, Jiang J-H (2015) Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111 T, a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. J Biotechnol 216:129–130CrossRefPubMedGoogle Scholar
  61. Reading C, Cole M (1977) Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11(5):852–857CrossRefPubMedPubMedCentralGoogle Scholar
  62. Reddy T, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC (2014) The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification. Nucleic acids Res 43:D1099–D1106CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ryu Y-G, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72(11):7132–7139CrossRefPubMedPubMedCentralGoogle Scholar
  64. Santos SN, Gacesa R, Taketani RG, Long PF, Melo IS (2015) Genome sequence of Streptomyces caatingaensis CMAA 1322, a new abiotic stress-tolerant actinomycete isolated from dried lake bed sediment in the Brazilian Caatinga biome. Genome Announc 3(5):e01020–e01015CrossRefPubMedPubMedCentralGoogle Scholar
  65. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760CrossRefPubMedGoogle Scholar
  66. Schröder J, Tauch A (2013) The transcriptional regulatory network of corynebacterium glutamicum. In: Corynebacterium glutamicum. Springer, Berlin, pp 239–261CrossRefGoogle Scholar
  67. Schwientek P, Szczepanowski R, Rückert C, Kalinowski J, Klein A, Selber K, Wehmeier UF, Stoye J, Pühler A (2012) The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110. BMC Genomics 13(1):1CrossRefGoogle Scholar
  68. Song L, Barona-Gomez F, Corre C, Xiang L, Udwary DW, Austin MB, Noel JP, Moore BS, Challis GL (2006) Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J Am Chem Soc 128(46):14754–14755CrossRefPubMedPubMedCentralGoogle Scholar
  69. Starcevic A, Zucko J, Simunkovic J, Long PF, Cullum J, Hranueli D (2008) ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res 36(21):6882–6892CrossRefPubMedPubMedCentralGoogle Scholar
  70. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1(1):1–11CrossRefPubMedGoogle Scholar
  71. Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M (2011) Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzym Microb Technol 49(1):17–24CrossRefGoogle Scholar
  72. Tethnol M, Rapoport M, Rapoport T (1984) Network rigidity and metabolic engineering in metabolite overproduction. Biol Chem 259:9646Google Scholar
  73. Tian J, Chen H, Guo Z, Liu N, Li J, Huang Y, Xiang W, Chen Y (2016) Discovery of pentangular polyphenols hexaricins A–C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl Microbiol Biotechnol 100(9):4189–4199CrossRefPubMedGoogle Scholar
  74. Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32(2):108–132CrossRefPubMedGoogle Scholar
  75. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci 104(25):10376–10381CrossRefPubMedPubMedCentralGoogle Scholar
  76. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41(6):633–646CrossRefPubMedGoogle Scholar
  77. Wang Y, Cui T, Zhang C, Yang M, Huang Y, Li W, Zhang L, Gao C, He Y, Li Y (2010) Global protein−protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res 9(12):6665–6677CrossRefPubMedGoogle Scholar
  78. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43(W1):W237–W243CrossRefPubMedPubMedCentralGoogle Scholar
  79. Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288CrossRefPubMedGoogle Scholar
  80. Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S (2014) Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genomics 15(1):1CrossRefGoogle Scholar
  81. Yamamura H, Ashizawa H, Hamada M, Hosoyama A, Komaki H, Otoguro M, Tamura T, Hayashi Y, Nakagawa Y, Ohtsuki T (2014) Streptomyces hokutonensis sp. nov., a novel actinomycete isolated from the strawberry root rhizosphere. J Antibiot 67(6):465–470CrossRefPubMedGoogle Scholar
  82. Zabala D, Braña AF, Flórez AB, Salas JA, Méndez C (2013) Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20:187–197CrossRefPubMedGoogle Scholar
  83. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10(4):625–633CrossRefPubMedGoogle Scholar
  84. Zhu D, Seo M-J, Ikeda H, Cane DE (2011) Genome mining in Streptomyces. Discovery of an unprecedented P450-catalyzed oxidative rearrangement that is the final step in the biosynthesis of pentalenolactone. J Am Chem Soc 133(7):2128–2131CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158(4):168–175CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of Science, University of TehranTehranIran
  2. 2.Microbial Technology and Products Research CenterUniversity of TehranTehranIran

Personalised recommendations