Advertisement

Practical Aspects of Working with Actinobacteria

  • Joachim WinkEmail author
  • Fatemeh MohammadipanahEmail author
  • Hamed Kazemi Shariat Panahi
Chapter

Abstract

More than other bacteria Actinobacteria, especially the mycelium forming ones impress by their appearance, the color of the aerial mycelium, of the substrate mycelium and also of pigments that diffuse into the agar (Cross 1989; Krasil’nikov 1979; Küster 1976) and the morphology of their differentiation stages (Gottlieb 1961) which will be described in the later chapters. The aerial mycelium which makes them look like a fungus and the often three dimensional shape of the colony. The color of the aerial mycelium has been used by many groups for a first classification (Flaig and Kutzner 1960; Ettlinger et al. 1958; Shirling and Gottlieb 1966; Tresner and Backus 1963). The main classification groups are: white, grey white, cream (Streptomyces albus); yellow-grey (Streptomyces griseus); rose, pale violet (Streptomyces fradiae, Microbispora rosea), rose-grey (Streptomyces lavendulae); pale brown, red brown (Streptomyces fragilis); pale blue, grey-blue (Streptomyces viridochromogenes); blue green (Streptomyces glaucescens, Actinomadura rubrobrunnea); pale green, green (Streptomyces prasinus, Microtetraspora viridis); pale grey, grey (Streptomyces violaceoruber, Microtetraspora glauca) (Blinov and Khokhlov 1970). By the description of the aerial mycelium color three points have to be kept in mind. The first is that the typical color is only expressed if the culture is also sporulating. Different species often sporulate on different media, so a number of agar cultures have to be prepared to get good results. The second is the diffusion of pigments from the substrate mycelium into the aerial mycelium which can have influences on the shade of the aerial mycelium. The third is the experience with many different Actinobacteria and their pigmentation, to do this grouping well. It is therefore very important to use the same media and culture conditions for all strains that will be compared. Over the years the use of the media from Shirling and Gottlieb (1966) from the “International Streptomyces Project/ISP” has been established in nearly all labs working with Actinobacteria (composition of media, see Sect. 11.2.1).

References

  1. Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R (2014) Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 12(3):1220–1244PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ackermann BL, Regg BT, Colombo L, Stella S, Coutant JE (1996) Rapid analysis of antibiotic-containing mixtures from fermentation broths by using liquid chromatography-electrospray ionization-mass spectrometry and matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry. J Am Soc Mass Spectrom 7(12):1227–1237PubMedCrossRefGoogle Scholar
  3. Agarwal A, D’Souza P, Johnson TS, Dethe SM, Chandrasekaran C (2014) Use of in vitro bioassays for assessing botanicals. Curr Opin Biotechnol 25:39–44PubMedCrossRefGoogle Scholar
  4. Ahlert J, Shepard E, Lomovskaya N, Zazopoulos E, Staffa A, Bachmann BO, Huang K, Fonstein L, Czisny A, Whitwam RE (2002) The calicheamicin gene cluster and its iterative type I enediyne PKS. Science 297(5584):1173–1176PubMedCrossRefGoogle Scholar
  5. Alvi K, Peterson J, Hofmann B (1995) Rapid identification of elaiophylin and geldanamycin in Streptomyces fermentation broths using CPC coupled with a photodiode array detector and LC-MS methodologies. J Ind Microbiol 15(2):80–84PubMedCrossRefGoogle Scholar
  6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410Google Scholar
  7. Baldacci E, Spalla C, Grein A (1954) The classification of the Actinomyces species (Streptomyces). Arch Microbiol 20:347–357Google Scholar
  8. Baldacci E, Farina G, Locci R (1966) Emendation of the genus Streptoverticillium Baldacci (1958) and revision of some species. G Microbiol 14:153–171Google Scholar
  9. Ball KD, Trevors J (2002) Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J Microbiol Methods 49(3):275–284PubMedCrossRefGoogle Scholar
  10. Bennedict RG, Pridham TG, Lindenfelser LA, Hall HH, Jackson RW (1955) Further studies in the evaluation of carbohydrate utilization tests as aids in the differentiation of species of Streptomyces. Appl Microbiol 3:1–6Google Scholar
  11. Besemer J, Borodovsky M (1999) Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27(19):3911–3920PubMedPubMedCentralCrossRefGoogle Scholar
  12. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beutler JA, Alvarado AB, Schaufelberger DE, Andrews P, McCloud TG (1990) Dereplication of phorbol bioactives: Lyngbya Majuscula and Croton Cuneatus. J Nat Prod 53(4):867–874PubMedCrossRefGoogle Scholar
  14. Beyer S, Distler J, Piepersberg W (1996) Thestr gene cluster for the biosynthesis of 5′-hydroxystreptomycin inStreptomyces glaucescens GLA. 0 (ETH 22794): new operons and evidence for pathway-specific regulation by StrR. Mol Gen Genet MGG 250(6):775–784PubMedGoogle Scholar
  15. Bland CE, Couch JN (1981) The family Actinoplanaceae. In: Starr MP, Stolp H, Trüper HG, Balons A, Schlegel HG (eds) TheProkaryotes – a handbook on habitats, isolation and identification of bacteria. Springer Verlag, Berlin, pp 2004–2010Google Scholar
  16. Blinov NO, Khokhlov AS (1970) Pigments and taxonomy of actinomycetales. In: Prauser H (ed) The Actinomycetales, Jena Int. Symp. Tax, vol 1968. VEB Fischer Verlag, Jena, pp 145–154Google Scholar
  17. Blunt J, Munro M, Laatsch H (2006) AntiMarin database. University of Canterbury, ChristchurchGoogle Scholar
  18. Borodovsky M, McIninch J (1993) Recognition of genes in DNA sequence with ambiguities. Biosystems 30(1):161–171PubMedCrossRefGoogle Scholar
  19. Cerdeño AM, Bibb MJ, Challis GL (2001) Analysis of the prodiginine biosynthesis gene cluster of Streptomyces Coelicolor A3 (2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol 8(8):817–829PubMedCrossRefGoogle Scholar
  20. Challis GL (2006) Engineering Escherichia Coli to produce nonribosomal peptide antibiotics. Nat Chem Biol 2(8):398–400PubMedCrossRefGoogle Scholar
  21. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154(6):1555–1569PubMedCrossRefGoogle Scholar
  22. Chaudhuri RR, Loman NJ, Snyder LA, Bailey CM, Stekel DJ, Pallen MJ (2008) xBASE2: a comprehensive resource for comparative bacterial genomics. Nucleic Acids Res 36(suppl 1):D543–D546PubMedGoogle Scholar
  23. Clos LJ II, Jofre MF, Ellinger JJ, Westler WM, Markley JL (2013) NMRbot: python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers. Metabolomics 9(3):558–563PubMedPubMedCentralCrossRefGoogle Scholar
  24. Corre C, Challis GL (2007) Heavy tools for genome mining. Chem Biol 14(1):7–9PubMedCrossRefGoogle Scholar
  25. Crevelin E, de Moraes LB, de Melo IS (2010) Mass spectrometry in microbial metabolomic analysis as an analytical tool for dereplication strategy. Planta Med 76(12):P545CrossRefGoogle Scholar
  26. Crevelin EJ, Crotti AE, Zucchi TD, Melo IS, Moraes LA (2014) Dereplication of Streptomyces sp. AMC 23 polyether ionophore antibiotics by accurate-mass electrospray tandem mass spectrometry. J Mass Spectrom 49(11):1117–1126PubMedCrossRefGoogle Scholar
  27. Cross T (1981) The monosporic Actinomycetes. In: Starr MP, Stolp H, Trüper HG, Balons A, Schlegel HG (eds) TheProkaryotes – a handbook on habitats, isolation and identification of bacteria. Springer Verlag, Berlin, pp 2091–2102Google Scholar
  28. Cross T (1989) Growth and examination of Actinomycetes-some guidelines. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic becteriology, vol 4. Williams and Wilkins, Baltimore, pp 2340–2343Google Scholar
  29. Dashti Y, Grkovic T, Abdelmohsen UR, Hentschel U, Quinn RJ (2014) Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and nocardiopsis sp. RV163. Mar Drugs 12(5):3046–3059PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davis L (2012) Basic methods in molecular biology. Elsevier, AmsterdamGoogle Scholar
  31. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27(23):4636–4641PubMedPubMedCentralCrossRefGoogle Scholar
  32. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679PubMedPubMedCentralCrossRefGoogle Scholar
  33. Donadio S, Monciardini P, Alduina R, Mazza P, Chiocchini C, Cavaletti L, Sosio M, Puglia AM (2002) Microbial technologies for the discovery of novel bioactive metabolites. J Biotechnol 99(3):187–198PubMedCrossRefGoogle Scholar
  34. Dorokhova LA, Agre NS, Kalakoutskii LV, Krasil’nikov NA (1969) Fine structure of sporulating hyphae and spores in a thermophilic actinomycete, Micropolyspora rectivirgula. J Microsc 8:845–854Google Scholar
  35. Doyle TW, Borders DB (1995) Enediyne antibiotics as antitumor agents. Marcel Dekker, New YorkGoogle Scholar
  36. Drechsler C (1919) Morphology of the genus Actinomyces II. Bot Gaz 67:147–168CrossRefGoogle Scholar
  37. Duché J (1934) Les actinomyces du groupe Albus. Encycl Mycol VI:1–375Google Scholar
  38. Ettlinger L, Corbaz R, Hütter R (1958) Zur Systematik der Actinomyceten. 4. Eine Arteinteilung der Gattung Streptomyces Waksman and Henricic. Arch Microbiol 31:326–358Google Scholar
  39. Farnet CM, Zazopoulos E (2005) Improving drug discovery from microorganisms. In: Natural products. Springer, Totowa, pp 95–106CrossRefGoogle Scholar
  40. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2(3):155–168PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106(8):3468–3496PubMedCrossRefGoogle Scholar
  42. Flaig W, Kutzner H (1960) Beitrag zur Systematik der Gattung Streptomyces Waksman and Henrici. Arch Microbiol 35:105–138Google Scholar
  43. Forner D, Berrué F, Correa H, Duncan K, Kerr RG (2013) Chemical dereplication of marine actinomycetes by liquid chromatography–high resolution mass spectrometry profiling and statistical analysis. Anal Chim Acta 805:70–79PubMedCrossRefGoogle Scholar
  44. Gauze GF, Preobrazhenskaya TP, Kudrina ES, Blinov NO, Ryabova ID, Sveshnikova MA (1957) Problems in the classification of antagonistic actinomycetes. State publishing house for medical literature (in Russian). Medzig, MoscowGoogle Scholar
  45. Gibbs AJ, McIntyre GA (1970) The diagram, a method for comparing sequences. FEBS J 16(1):1–11Google Scholar
  46. Gottlieb D (1961) An evaluation of criteria and procedures in the description and characterization of the Streptomycetes. Appl Microbiol 9:55–65PubMedPubMedCentralGoogle Scholar
  47. Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14(1):53–63PubMedCrossRefGoogle Scholar
  48. Hakvåg S, Fjærvik E, Josefsen KD, Ian E, Ellingsen TE, Zotchev SB (2008) Characterization of Streptomyces spp. isolated from the sea surface microlayer in the Trondheim fjord, Norway. Mar Drugs 6(4):620–635PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hao C, Huang S, Deng Z, Zhao C, Yu Y (2014) Mining of the pyrrolamide antibiotics analogs in Streptomyces netropsis reveals the amidohydrolase-dependent “iterative strategy” underlying the pyrrole polymerization. PLoS One 9(6):e99077PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hara H, Ohnishi Y, Horinouchi S (2009) DNA microarray analysis of global gene regulation by A-factor in Streptomyces Griseus. Microbiology 155(7):2197–2210PubMedCrossRefGoogle Scholar
  51. Haynes SW, Challis GL (2007) Non-linear enzymatic logic in natural product modular mega-synthases and-synthetases. Curr Opin Drug Discov Devel 10(2):203–218PubMedGoogle Scholar
  52. Henssen A (1970) Spore formation in thermophilic Actinomycetes. In: Prauser H (ed) The Actinomycetales, Jena Int. Symp tax, vol 1968. VEB Fischer Verlag, Jena, pp 205–210Google Scholar
  53. Hesseltine CW, Bennedict RG, Pridham TG (1954) Useful criteria for species differentiation on the genus Streptomyces. Ann N Y Acad Sci 60:136–151PubMedCrossRefGoogle Scholar
  54. Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, Wyche TP, Bugni TS (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84(10):4277–4283PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hubert J, Nuzillard JM, Renault JH (2015) Dereplication strategies in natural product research: how many tools and methodologies behind the same concept? Phytochem Rev 16:1–41Google Scholar
  56. Hufsky F, Scheubert K, Böcker S (2014) Computational mass spectrometry for small-molecule fragmentation. Trends Anal Chem 53:41–48CrossRefGoogle Scholar
  57. Humble MW, King A, Phillips I (1977) API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30:275–277PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hütter R (1967) Systematik der Streptomyceten unter besonderer Berücksichtigung der von ihnen gebildeten Antibiotika. Bibl Microbiol 6:1–382PubMedGoogle Scholar
  59. Ito T, Odake T, Katoh H, Yamaguchi Y, Aoki M (2011) High-throughput profiling of microbial extracts. J Nat Prod 74(5):983–988PubMedCrossRefGoogle Scholar
  60. Jain SK, Pathania AS, Parshad R, Raina C, Ali A, Gupta AP, Kushwaha M, Aravinda S, Bhushan S, Bharate SB (2013) Chrysomycins A–C, antileukemic naphthocoumarins from Streptomyces sporoverrucosus. RSC Adv 3(43):21046–21053CrossRefGoogle Scholar
  61. Jensen HL (1930) Actinomycetes in Danish soils. Soil Sci 30:59–77CrossRefGoogle Scholar
  62. Jeunilaux C (1955) Production of exochitinase by Streptomyces. CR Soc Biol 149:1307–1308Google Scholar
  63. Ji Z, Wei S, Zhang J, Wu W, Wang M (2008) Identification of streptothricin class antibiotics in the early-stage of antibiotics screening by electrospray ionization mass spectrometry. J Antibiot 61(11):660PubMedCrossRefGoogle Scholar
  64. Kameník Z, Hadacek F, Marečková M, Ulanova D, Kopecký J, Chobot V, Plháčková K, Olšovská J (2010) Ultra-high-performance liquid chromatography fingerprinting method for chemical screening of metabolites in cultivation broth. J Chromatogr A 1217(51):8016–8025PubMedCrossRefGoogle Scholar
  65. Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry–guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kilian M (1978) Rapid identification of Actinomycetaceae and related bacteria. J Clin Microbiol 8:127–133PubMedPubMedCentralGoogle Scholar
  67. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78(7):1671–1682PubMedPubMedCentralCrossRefGoogle Scholar
  68. Krainsky A (1914) Die Aktinomyceten und ihre Bedeutung in der Natur. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt II 41:649–688Google Scholar
  69. Krasil’nikov NA (1941) Guide to the bacteria and Actinomycetes (in Russian). Akad. Nauk SSSR, MoscowGoogle Scholar
  70. Krasil’nikov NA (1949) Guide to the bacteria and Actinomycetes. Akad. Nauk SSSR, MoscowGoogle Scholar
  71. Krasil’nikov NA (1979) Pigmentation of Actinomycetes and its significance in taxonomy. In: Prauser H (ed) The Actinomycetales, Jena Int. Symp. Tax, vol 1968. VEB Fischer Verlag, Jena, pp 123–131Google Scholar
  72. Küster E (1976) Chromogenicity of Actinomycetes. In: Arai T (ed) Actinomycetes: the boundary microorganisms. Toppan Company, Ltd., Tokyo, pp 43–54Google Scholar
  73. Kutzner HJ (1981) The family Streptomycetaceae. In: Starr MP, Stolp H, Trüper HG, Balons A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer Verlag, Berlin, pp 2028–2090Google Scholar
  74. Kutzner HJ, Kroppensted RM, Korn-Wendisch F (1986) Methoden zur Untersuchung von Streptomyceten und einigen anderen Actinomyceten. 4 Auflage. Technische Universität, DarmstadtGoogle Scholar
  75. Kuznetsov VD, Yangulova JV (1970) Utilization of medium containing chitin for isolation and quantitative enumeration of actinomycetes from soil. Microbiologiya 39:902–906Google Scholar
  76. Lang G, Mayhudin NA, Mitova MI, Sun L, van der Sar S, Blunt JW, Cole AL, Ellis G, Laatsch H, Munro MH (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71(9):1595–1599PubMedCrossRefGoogle Scholar
  77. Larsen TS, Krogh A (2003) EasyGene–a prokaryotic gene finder that ranks ORFs by statistical significance. BMC Bioinformatics 4(1):1CrossRefGoogle Scholar
  78. Lease RA, Belfort M (2000) A trans-acting RNA as a control switch in Escherichia Coli: DsrA modulates function by forming alternative structures. Proc Natl Acad Sci 97(18):9919–9924PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lee PS, Lee KH (2000) Genomic analysis. Curr Opin Biotechnol 11(2):171–175PubMedCrossRefGoogle Scholar
  80. Liu W, Christenson SD, Standage S, Shen B (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297(5584):1170–1173PubMedCrossRefGoogle Scholar
  81. Locci R (1971) On the spore formation process in Actinomycetes. IV. Examination by scanning electron microscopy of the genera Thermoactinomyces, Actinobifida and Thermomonospora. Riv Pat Vegetab Suppl 7:63–80Google Scholar
  82. MacFaddin JF (1980) Biochemical tests for the identification of medical bacteria, 2nd edn. Williams & Wilkins Co., BaltimoreGoogle Scholar
  83. Macintyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, Abdelmohsen UR, Gernert C, Hentschel U, Edrada-Ebel R (2014) Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs 12(6):3416–3448PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mahyudin NA, Blunt JW, Cole AL, Munro MH (2012) The isolation of a new S-methyl benzothioate compound from a marine-derived Streptomyces sp. Biomed Res Int 2012:894708Google Scholar
  85. Maizel JV, Lenk RP (1981) Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci 78(12):7665–7669Google Scholar
  86. Malpartida F, Hopwood D (1984) Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nat Biotechnol 309:462–464Google Scholar
  87. Månsson M, Phipps RK, Gram L, Munro MH, Larsen TO, Nielsen KF (2010) Explorative solid-phase extraction (E-SPE) for accelerated microbial natural product discovery, dereplication, and purification. J Nat Prod 73(6):1126–1132Google Scholar
  88. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42(D1):D560–D567PubMedCrossRefGoogle Scholar
  89. Martin JF, Liras P (1989) Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites. Annu Rev Microbiol 43(1):173–206PubMedCrossRefGoogle Scholar
  90. Medema MH, Paalvast Y, Nguyen DD, Melnik A, Dorrestein PC, Takano E, Breitling R (2014) Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS computational biololy 10(9):e1003822CrossRefGoogle Scholar
  91. Miyadoh S, Gakkai NH (1997) Atlas of Actinomycetes. Asakura Publishing Co, TokyoGoogle Scholar
  92. Molyneux RJ, Schieberle P (2007) Compound identification: a journal of agricultural and food chemistry perspective. J Agric Food Chem 55(12):4625–4629PubMedCrossRefGoogle Scholar
  93. Mount DW (2004) Bioinformatics: sequence and genome analysis, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring HarbourGoogle Scholar
  94. Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nguyen DD, Wu CH, Moree WJ, Lamsa A, Medema MH, Zhao X, Gavilan RG, Aparicio M, Atencio L, Jackson C (2013) MS/MS networking guided analysis of molecule and gene cluster families. Proc Natl Acad Sci 110(28):E2611–E2620PubMedPubMedCentralCrossRefGoogle Scholar
  96. Nielsen KF, Månsson M, Rank C, Frisvad JC, Larsen TO (2011) Dereplication of microbial natural products by LC-DAD-TOFMS. J Nat Prod 74(11):2338–2348PubMedCrossRefGoogle Scholar
  97. Nitsch B, Kutzner HJ (1968) Bildung eines melanoiden Pigments durch Streptomyces griseus auf synthetischen Medien mit Tyrosin. Z Naturforsch 23b:566Google Scholar
  98. Nitsch B, Kutzner HJ (1973) Wachstum von Streptomyceten in Schüttelagarkulturen: eine neue Methode zur Feststellung des C-Qellen-Spektrums. Symp Tech Mikrobiol 3:481–486Google Scholar
  99. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces Griseus IFO 13350. J Bacteriol 190(11):4050–4060PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pauli GF, Chen SN, Lankin DC, Bisson J, Case RJ, Chadwick LR, Gödecke T, Inui T, Krunic A, Jaki BU (2014) Essential parameters for structural analysis and dereplication by 1H NMR spectroscopy. J Nat Prod 77(6):1473–1487PubMedPubMedCentralCrossRefGoogle Scholar
  101. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci 85(8):2444–2448Google Scholar
  102. Pridham TG, Gottlieb D (1948) The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol 56:107–114PubMedPubMedCentralGoogle Scholar
  103. Pridham TG, Hesseltine CW, Bennedict RG (1958) A guide for the classification of Streptomyces according to selected groups. Placement of strains in morphological sections. Appl Microbiol 6:52–79PubMedPubMedCentralGoogle Scholar
  104. Proudnikov D, Timofeev E, Mirzabekov A (1998) Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA–oligonucleotide microchips. Anal Biochem 259(1):34–41PubMedCrossRefGoogle Scholar
  105. Reynolds DM (1954) Exocellular chitinase from Streptomyces ssp. J Gen Microbiol 11:150–159PubMedCrossRefGoogle Scholar
  106. Rick WY, Wang T, Bedzyk L, Croker KM (2001) Applications of DNA microarrays in microbial systems. J Microbiol Methods 47(3):257–272CrossRefGoogle Scholar
  107. Ritacco F, Haltli B, Janso J, Greenstein M, Bernan V (2003) Dereplication of Streptomyces soil isolates and detection of specific biosynthetic genes using an automated ribotyping instrument. J Ind Microbiol Biotechnol 30(8):472–479PubMedCrossRefGoogle Scholar
  108. Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26(2):544–548PubMedPubMedCentralCrossRefGoogle Scholar
  109. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467PubMedCrossRefGoogle Scholar
  110. Schiex T, Gouzy J, Moisan A, de Oliveira Y (2003) FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences. Nucleic Acids Res 31(13):3738–3741PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schwecke T, Aparicio JF, Molnar I, König A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci 92(17):7839–7843PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shinobu R (1958) Physiological and cultural study for the identification of soil Actinomycetes species. Mem Osaka Univ Arts Educ B Natur Science 7:1–76Google Scholar
  113. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  114. Singh SB, Pelaez F (2008) Biodiversity, chemical diversity and drug discovery. In: Petersen F, Amstutz R (eds) Natural compounds as drugs, vol 1. Springer, Basel, pp 141–174CrossRefGoogle Scholar
  115. Sladič G, Urukalo M, Kirn M, Lešnik U, Magdevska V, Benički N, Pelko M, Gasparič A, Raspor P, Polak T (2014) Identification of lipstatin-producing ability in Streptomyces virginiae CBS 314.55 using dereplication approach. Food Technol Biotechnol 52(3):276–284Google Scholar
  116. Stafsnes MH, Dybwad M, Brunsvik A, Bruheim P (2013) Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection. Antonie Van Leeuwenhoek 103(3):603–615PubMedCrossRefGoogle Scholar
  117. Stavri M, Schneider R, O’Donnell G, Lechner D, Bucar F, Gibbons S (2004) The antimycobacterial components of hops (Humulus Lupulus) and their dereplication. Phytother Res 18(9):774–776PubMedCrossRefGoogle Scholar
  118. Suter MA (1978) Isolierung von Melanin-negativen Mutanten aus Streptomyces glaucescens, vol 6276. Diss ETH Zürich, ZurichGoogle Scholar
  119. Tanghe A, Teunissen A, Van Dijck P, Thevelein J (2000) Identification of genes responsible for improved cryoresistance in fermenting yeast cells. Int J Food Microbiol 55(1):259–262PubMedCrossRefGoogle Scholar
  120. Tresner HD, Backus EJ (1963) System for color wheels for streptomycete taxonomy. Appl Microbiol 11:335–338PubMedPubMedCentralGoogle Scholar
  121. Tresner HD, Davies MV, Backus EJ (1961) Electron microscopy of Streptomyces spore morphology and its role in species differentiation. J Bacteriol 81:70–80PubMedPubMedCentralGoogle Scholar
  122. Van Der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32(6):234–252PubMedCrossRefGoogle Scholar
  123. Viegelmann C, Margassery LM, Kennedy J, Zhang T, O’Brien C, O’Gara F, Morrissey JP, Dobson AD, Edrada-Ebel R (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12(6):3323–3351Google Scholar
  124. Vobis G (1985) Spore development in sporangia-forming Actinomycetes. In: Szabo G, Biró S, Goodfellow M (eds.), Proceedings of the Sixth International Symposium on Actinomycetes Biology, Debrecen, Hungary, 26–30 August, 1985, pp 443–452Google Scholar
  125. Vobis G, Kothe HW (1985) Sporogenesis in sporangiate Actinomycetes. In: Pathak NC, Singh VP (eds) Frontiers in applied microbiology, vol 1. Print House, LucknowGoogle Scholar
  126. Waksman SA (1919) Cultural studies of species of Actinomycetes. Soil Sci 8:71–215CrossRefGoogle Scholar
  127. Waksman SA (1961) The Actinomycetes. II. Classification, identification and description of genera and species. The Williams and Wilkins Co., Baltimore, p 363Google Scholar
  128. Waksman SA, Curtis RE (1916) The actinomyces of the soil. Soil Sci I 1(2):99–134CrossRefGoogle Scholar
  129. Wildermuth H (1972) The surface structure of spores and aerial hyphae in Streptomyces viridochromogenes. Arch Microbiol 81:309–320Google Scholar
  130. Williams ST, Bradshaw RM, Colsterton JW, Forge A (1972) Fine structure of the sheath of some Streptomyces species. J Gen Microbiol 72:249–258PubMedCrossRefGoogle Scholar
  131. Williams ST, Goodfellow M, Alderson G (1989) Genus Streptomyces Waksman and Henrici 1943, 339AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic becteriology, vol 4. Williams and Wilkins, Baltimore, pp 2452–2492Google Scholar
  132. Williams ST, Wellington EMH (1981) The genera Actinomadura, Actinopolyspora, Excellospora, Microbispora, Micropolyspora, Microtetraspora, Nocardiopsis, Saccharopolyspora, andPseudonocardia. In: Starr MP, Stolp H, Trüper HG, Balons A, Schlegel HG (eds) TheProkaryotes: a handbook on habitats, isolation and identification of bacteria. Springer Verlag, Berlin, pp 2103–2117Google Scholar
  133. Wink J (2003) Polyphasic taxonomy and antibiotic formation in some closely related genera of the family Pseudonocardiaceae. In: Pandalai SG (ed) Recent research developments in antibiotics. Transworld Research Network, Trivandrum, pp 97–140Google Scholar
  134. Wink J (2016) Compendium of Actinobacteria from Dr. Joachim M. Wink University of Braunschweig Copyright Dr. Joachim M. Wink, Helmholtz-Zentrum für Infektionsforschung http://www.dsmz.de/bacterial-diversity/compendium-of-actinobacteria.html
  135. Wink J, Gandhi J, Kroppenstedt RM, Seibert G, Straubler B, Schumann P, Stackebrandt E (2004) Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology. Int J Syst Evol Microbiol 54:235–239PubMedCrossRefGoogle Scholar
  136. Witt D, Stackebrandt E (1990) Unification of the genera Streptoverticillium and Streptomyces, and emendation of Streptomyces Waksman and Henrici 1943, 339al. Syst Appl Microbiol 13:361–371CrossRefGoogle Scholar
  137. Wolfender JL (2009) HPLC in natural product analysis: the detection issue. Planta Med 75(7):719–734PubMedCrossRefGoogle Scholar
  138. Xie P, Ma M, Rateb ME, Shaaban KA, Yu Z, Huang SX, Zhao LX, Zhu X, Yan Y, Peterson RM (2014) Biosynthetic potential-based strain prioritization for natural product discovery: a showcase for diterpenoid-producing actinomycetes. J Nat Prod 77(2):377–387PubMedPubMedCentralCrossRefGoogle Scholar
  139. Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, De Felicio R, Fenner A (2013) Molecular networking as a dereplication strategy. J Nat Prod 76(9):1686–1699PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zähner H, Ettlinger L (1957) Zur Systematik der Aktinomyceten. 3. Die Verwertung verschiedener Kohlenstoffquellen als Hilfsmittel zur Artbestimmung innerhalb der Gattung Streptomyces. Arch Mikrobiol 26:307–328PubMedCrossRefGoogle Scholar
  141. Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21(2):187–190PubMedCrossRefGoogle Scholar
  142. Zhao L-X, Huang S-X, Tang S-K, Jiang C-L, Duan Y, Beutler JA, Henrich CJ, McMahon JB, Schmid T, Blees JS (2011) Actinopolysporins A–C and tubercidin as a Pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600. J Nat Prod 74(9):1990–1995PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Helmholtz Centre for Infection ResearchBraunschweigGermany
  2. 2.Department of Microbial BiotechnologySchool of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of TehranTehranIran

Personalised recommendations