Advertisement

The Role of Actinobacteria in Biotechnology

  • Javad HamediEmail author
  • Naghmeh Poorinmohammad
  • Joachim Wink
Chapter

Abstract

Microbial biotechnology, as a pioneering knowledge of producing goods and services from microorganisms and their parts or products, has paved a long way of history. From the very early production of cheese and beverage without the knowledge of its bio-based mechanism in the onset of civilization in fertile crescent (about 10,000 years ago) and later the classical microbial fermentation technology in Europe (19th century) where microorganisms where consciously implemented, to the revolutionary introduction of recombinant DNA technology in the United States of America (20th century), microbial biotechnology has shown its great potential in different sections. Accordingly, this chapter tries to comprehensively summarize the current major issues and trends in the field of actinobacterial biotechnology and their potential roles in biotechnological potencies and productions to give an appropriate overview of their applied potentials.

References

  1. Abramić M, Leščić I, Korica T, Vitale L, Saenger W, Pigac J (1999) Purification and properties of extracellular lipase from Streptomyces rimosus. Enzym Microb Technol 25(6):522–529CrossRefGoogle Scholar
  2. Aftabuddin S, Kashem MA, Kader MA, Sikder M, Hakim MA (2013) Use of Streptomyces fradiae and Bacillus megaterium as probiotics in the experimental culture of tiger shrimp Penaeus monodon (Crustacea, Penaeidae). Aquacult Aquar Conserv Legislat 6(3):253Google Scholar
  3. Aharonowitz Y, Demain AL (1978) Carbon catabolite regulation of cephalosporin production in Streptomyces clavuligerus. Antimicrob Agents Chemother 14(2):159–164PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824CrossRefGoogle Scholar
  5. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  6. Albarracín VH, Amoroso MJ, Abate CM (2010) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants. Chemosphere 79(2):131–137PubMedCrossRefGoogle Scholar
  7. Amoroso MJ, Castro GR, Carlino FJ, Romero NC, Hill RT, Oliver G (1998) Screening of heavy metal-tolerant actinomycetes isolated from the Sali River. J Gen Appl Microbiol 44(2):129–132PubMedCrossRefGoogle Scholar
  8. Aoyagi T, Takeuchi T, Matsuzaki A, Kawamura K, Kondo S, Hamada M et al (1969) Leupeptins, new protease inhibitors from actinomycetes. J Antibiot 22(6):283–286PubMedCrossRefGoogle Scholar
  9. Arcamone F, Cassinelli G, Fantini G, Grein A, Orezzi P, Pol C, Spalla C (1969) Adriamycin, 14-hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnol Bioeng 11(6):1101–1110PubMedCrossRefGoogle Scholar
  10. Arya R, Sharma AK (2016) Bioremediation of Carbendazim, a Benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Curr Pharm Biotechnol 17(2):185–189CrossRefGoogle Scholar
  11. Arya R, Sharma R, Malhotra M, Kumar V, Sharma A (2015) Biodegradation aspects of carbendazim and sulfosulfuron: trends, scope and relevance. Curr Med Chem 22(9):1147–1155CrossRefGoogle Scholar
  12. Augustine D, Jacob JC, Philip R (2016) Exclusion of Vibrio spp. by an antagonistic marine actinomycete Streptomyces rubrolavendulae M56. Aquacul Res 47(9):2951–2960Google Scholar
  13. Balagurunathan R, Radhakrishnan M (2010) Biotechnological, genetic engineering and nanotechnological potential of actinomycetes. In: Maheshwari DK, Dubey RC, Saravanamuthu R (eds) Industrial exploitation of microorganisms. IK, New Delhi, pp 302–321Google Scholar
  14. Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys 48(5):331–335PubMedGoogle Scholar
  15. Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33(7):507–513PubMedCrossRefGoogle Scholar
  16. Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2(3):125Google Scholar
  17. Battersby AR, McDonald E, Thompson M, Williams DC, Morris HR, Bykhovsky VY et al (1977) Biosynthesis of vitamin B 12: structural studies on the corriphryins from Propionibacterium shermanii and the link with sirohydrochlorin. Tetrahedron Lett 18(25):2217–2220CrossRefGoogle Scholar
  18. Bavya M, Mohanapriya P, Pazhanimurugan R, Balagurunathan R (2011) Potential bioactive compound from marine actinomycetes against biofouling bacteria. Ind J Marine Sci 40(4):578Google Scholar
  19. Bennur T, Khan Z, Kshirsagar R, Javdekar V, Zinjarde S (2016) Biogenic gold nanoparticles from the Actinomycete Gordonia amarae: application in rapid sensing of copper ions. Sensors Actuators B Chem 233:684–690CrossRefGoogle Scholar
  20. Bérdy J (2015) Microorganisms producing antibiotics. In: Antibiotics: current innovations and future trends. Caister Academic Press, Norfolk, pp 49–64CrossRefGoogle Scholar
  21. Bernal MG, Campa-Córdova ÁI, Saucedo PE, González MC, Marrero RM, Mazón-Suástegui JM (2015) Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture. Vet World 8(2):170–176PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219(4):561–578PubMedCrossRefGoogle Scholar
  23. Bhalla TC, Kumar H (2005) Nocardia globerula NHB-2: a versatile nitrile-degrading organism. Can J Microbiol 51(8):705–708PubMedCrossRefGoogle Scholar
  24. Bickel H, Gäumann E, Nussberger G, Reussner P, Vischer E, Voser W, Wettstein A, Zähner H (1960). Stoffwechselprodukte von Actinomyceten. Über die Isolierung und Charakterisierung der Ferrimycine A1 und A2, neuer Antibiotika der Sideromycin-Gruppe. Helv Chim Acta 43:2105–2118Google Scholar
  25. Bickel H, Mertens P, Prelog V, Seibl J, Walser A. (1966) Stoffwechselprodukte von Mikroorganismen – 53. Über die Konstitution von Ferrimycin A1. Tetrahedron Suppl. 8:171–179Google Scholar
  26. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79(3):471–479PubMedCrossRefGoogle Scholar
  27. Bloomquist JR (1993) Toxicology, mode of action and target site-mediated resistance to insecticides acting on chloride channels. Comp Biochem Physiol C: Pharmacol Toxicol Endocrinol 106(2):301–314Google Scholar
  28. Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41(1):163–190PubMedCrossRefGoogle Scholar
  29. Bloomquist JR (2003) Chloride channels as tools for developing selective insecticides. Arch Insect Biochem Physiol 54(4):145–156PubMedCrossRefGoogle Scholar
  30. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3(7):619–627PubMedCrossRefGoogle Scholar
  31. Brockmann H, Niemeyer J (1968) Die absolute konfiguration der anthracyclinone. Tetrahedron Lett 9(45):4719–4724CrossRefGoogle Scholar
  32. Broenstrup M, Koenig C, Toti L, Wink J, Leuschner W, Gassenhuber J et al (2012) Gene cluster for biosynthesis of griselimycin and methylgriselimycin. Google PatentsGoogle Scholar
  33. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R et al (1979) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15(3):361–367PubMedPubMedCentralCrossRefGoogle Scholar
  34. Burgess CM, Smid EJ, van Sinderen D (2009) Bacterial vitamin B2, B11 and B12 overproduction: an overview. Int J Food Microbiol 133(1):1–7PubMedCrossRefGoogle Scholar
  35. Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin Microbiol Rev 16(2):175–188PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cai Z, Chen Q, Wang H, He Y, Wang W, Zhao X, Ye Q (2012) Degradation of the novel herbicide ZJ0273 by Amycolatopsis sp. M3-1 isolated from soil. Appl Microbiol Biotechnol 96(5):1371–1379PubMedCrossRefGoogle Scholar
  37. Charney J, Fisher W, Curran C, Machlowitz R, Tytell A (1953) Streptogramin, a new antibiotic. Antibiot Chemother 3(12):1283Google Scholar
  38. Chaudhary P, Sharma R, Singh SB, Nain L (2011) Bioremediation of PAH by Streptomyces sp. Bull Environ Contam Toxicol 86(3):268–271PubMedCrossRefGoogle Scholar
  39. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Res Int 2013:1–15CrossRefGoogle Scholar
  40. Chen C-Y, Huang Y-C, Wei C-M, Meng M, Liu W-H, Yang C-H (2013) Properties of the newly isolated extracellular thermo-alkali-stable laccase from thermophilic actinomycetes, Thermobifida fusca and its application in dye intermediates oxidation. AMB Express 3(1):1–9CrossRefGoogle Scholar
  41. Cho JY, Kim MS (2012) Induction of antifouling diterpene production by Streptomyces cinnabarinus PK209 in co-culture with marine-derived Alteromonas sp. KNS-16. Biosci Biotechnol Biochem 76(10):1849–1854PubMedCrossRefGoogle Scholar
  42. Cho JY, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS (2012) Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291-11. Biosci Biotechnol Biochem 76(6):1116–1121PubMedCrossRefGoogle Scholar
  43. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2):232–260PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) The molecular mechanism of action of streptogramins and related antibiotics. Infect Dis Ther Ser 21:145–172Google Scholar
  45. Coombs JT, Michelsen PP, Franco CM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29(3):359–366CrossRefGoogle Scholar
  46. Crawford D, Kowalski M, Roberts M, Merrell G, Deobald L (2005) Discovery, development, and commercialization of a microbial antifungal biocontrol agent, Streptomyces lydicus WYEC108: history of a decade long endeavor. Soc Ind Microbiol News 55:88–95Google Scholar
  47. Das S, Ward LR, Burke C (2008) Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 81(3):419–429PubMedCrossRefGoogle Scholar
  48. Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5(6):234–240PubMedCrossRefGoogle Scholar
  49. Dehnad A, Hamedi J, Derakhshan-Khadivi F, Abuşov R (2015) Green synthesis of gold nanoparticles by a metal resistant Arthrobacter nitroguajacolicus isolated from gold mine. IEEE Trans Nanobioscience 14(4):393–396PubMedCrossRefGoogle Scholar
  50. Dharmaraj S, Dhevendaran K (2010) Evaluation of Streptomyces as a probiotic feed for the growth of ornamental fish Xiphophorus helleri. Food Technol Biotechnol 48(4):497–504Google Scholar
  51. Di Marco A, Gaetani M, Orezzi P, Scarpinato B, Silvestrini R, Soldati M et al (1964) ‘Daunomycin’, a new antibiotic of the rhodomycin group. Nature 201:706–707CrossRefGoogle Scholar
  52. Díaz E (2008) Microbial biodegradation: genomics and molecular biology. Horizon Scientific Press, NorfolkGoogle Scholar
  53. Dibner J, Richards J (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 84(4):634–643PubMedCrossRefGoogle Scholar
  54. Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1(1):2–17PubMedPubMedCentralCrossRefGoogle Scholar
  55. Donova M (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43(1):1–14CrossRefGoogle Scholar
  56. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447PubMedCrossRefGoogle Scholar
  57. Donovick R, Gold W, Pagano J, Stout H (1954) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antibiot Annu 3:579–586Google Scholar
  58. Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR, Tchalukov KA et al (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10(11):963–968PubMedPubMedCentralCrossRefGoogle Scholar
  59. Droumev D (1983) Review of antimicrobial growth promoting agents available. Vet Res Commun 7(1):85–99PubMedCrossRefGoogle Scholar
  60. Duggar BM (1948) Aureomycin: a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51(2):177–181PubMedCrossRefGoogle Scholar
  61. Duke S, Dayan F, Romagni J, Rimando A (2000) Natural products as sources of herbicides: current status and future trends. Weed Res (Oxf) 40(1):99–112CrossRefGoogle Scholar
  62. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca RatonCrossRefGoogle Scholar
  63. Ehrlich J, Bartz QR, Smith RM, Joslyn DA (1947) Chloromycetin, a new antibiotic from a soil actinomycete. American Association for the Advancement of Science. Science 106(2757):417PubMedCrossRefGoogle Scholar
  64. Ehrlich J, Gottlieb D, Burkholder PR, Anderson LE, Pridham T (1948) Streptomyces venezuelae, n. sp., the source of chloromycetin. J Bacteriol 56(4):467PubMedCentralGoogle Scholar
  65. Eisenstein BI, Oleson FB, Baltz RH (2010) Daptomycin: from the mountain to the clinic, with essential help from Francis tally, MD. Clin Infect Dis 50(Suppl 1):S10–S15PubMedCrossRefGoogle Scholar
  66. El Baz S, Baz M, Barakate M, Hassani L, El Gharmali A, Imziln B (2015) Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Sci World J 2015:761834Google Scholar
  67. Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1(2):103–111CrossRefGoogle Scholar
  68. El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38(7):1505–1520CrossRefGoogle Scholar
  69. Enger M, Sleeper B (1965) Multiple cellulase system from Streptomyces antibioticus. J Bacteriol 89(1):23–27PubMedPubMedCentralGoogle Scholar
  70. Fairbairn D, Priest F, Stark J (1986) Extracellular amylase synthesis by Streptomyces limosus. Enzym Microb Technol 8(2):89–92CrossRefGoogle Scholar
  71. Falentin H, Deutsch S-M, Jan G, Loux V, Thierry A, Parayre S et al (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1 T, a hardy Actinobacterium with food and probiotic applications. PLoS One 5(7):e11748PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ferchak J, Pye E (1980) Saccharification of cellulose by the cellulolytic enzyme system of Thermomonospora species. I. Stability of cellulolytic activities with respect to time, temperature and pH. Biotechnol Bioeng 22:1515–1526CrossRefGoogle Scholar
  73. Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R et al (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One 8(5):e64010PubMedPubMedCentralCrossRefGoogle Scholar
  74. Fernandes TAR, da Silveira WB, Passos FML, Zucchi TD (2014) Characterization of a thermotolerant laccase produced by Streptomyces sp. SB086. Ann Microbiol 64(3):1363–1369CrossRefGoogle Scholar
  75. Fiedler H-P, Walz F, Döhle A, Zähner H (1985) Albomycin: studies on fermentation, isolation and quantitative determination. Appl Microbiol Biotechnol 21(6):341–347CrossRefGoogle Scholar
  76. Finlay A, Hobby G, P'an S, Regna P, Routien J, Seeley D et al (1950) Terramycin, a new antibiotic. American Association for the Advancement of Science. Science 111:85–87PubMedCrossRefGoogle Scholar
  77. Frost BM, Valiant M, Weissberger B, Dulaney E (1976) Antibacterial activity of efrotomycin. J Antibiot 29(10):1083–1091PubMedCrossRefGoogle Scholar
  78. Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P et al (2015) Biosynthetic studies of telomycin reveal new lipopeptides with enhanced activity. J Am Chem Soc 137(24):7692–7705PubMedCrossRefGoogle Scholar
  79. Fuentes MS, Alvarez A, Saez JM, Benimeli CS, Amoroso MJ (2014) Use of actinobacteria consortia to improve methoxychlor bioremediation in different contaminated matrices. In: Bioremediation in Latin America. Springer, Cham, pp 267–277Google Scholar
  80. Fujiwara A, Hoshino T, Westley JW (1985) Anthracycline antibiotics. Crit Rev Biotechnol 3(2):133–157CrossRefGoogle Scholar
  81. Galm U, Hager MH, Van Lanen SG, Ju J, Thorson JS, Shen B (2005) Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem Rev 105(2):739–758PubMedCrossRefGoogle Scholar
  82. Gause G (1955) Recent studies on albomycin, a new antibiotic. Br Med J 2(4949):1177PubMedPubMedCentralCrossRefGoogle Scholar
  83. Gause GF, Brazhnikova MG (1951) Die Wirkung von Albomycin gegen Bakterien. Nov Med 23: 3–7Google Scholar
  84. Gebauer M, Skerra A (2009) Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol 13(3):245–255PubMedCrossRefGoogle Scholar
  85. Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38(3):375–389PubMedCrossRefGoogle Scholar
  86. Gessesse A, Gashe BA (1997) Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda lake. Biotechnol Lett 19(5):479–481CrossRefGoogle Scholar
  87. Gohel S, Singh S (2015) Thermodynamics of a Ca 2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 72:421–429PubMedCrossRefGoogle Scholar
  88. Golik J, Clardy J, Dubay G, Groenewold G, Kawaguchi H, Konishi M et al (1987) Esperamicins, a novel class of potent antitumor antibiotics. 2. Structure of esperamicin X. J Am Chem Soc 109(11):3461–3462CrossRefGoogle Scholar
  89. Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362CrossRefGoogle Scholar
  90. Gottlieb D, Bhattacharyya P, Anderson H, Carter H (1948) Some properties of an antibiotic obtained from a species of Streptomyces. J Bacteriol 55(3):409PubMedCentralGoogle Scholar
  91. Grein A, Spalla C, Dimarco A, Canevazzi G (1963) Descrizione e classificazione di un attinomicete (Streptomyces peucetius sp. nova) produttore di una sostanza ad attivita antitumorale-La Daunomicina. Giorn Microbiol 11(2):109–118Google Scholar
  92. Griesgraber G, Or YT, Chu DTW, Nilius AM, Johnson PM, Flamm RK et al (1996) 3-Keto-11, 12-carbazate derivatives of 6-0-methylerythromycin A synthesis and in vitro activity. J Antibiot 49(5):465–477PubMedCrossRefGoogle Scholar
  93. Grundy W, Sinclair A, Theriault R, Goldstein A, Rickher C, Warren H Jr et al (1955) Ristocetin, microbiologic properties. Antibiot Annu 1956–1957:687–692Google Scholar
  94. Gurram SP, Rama P, Sivadevuni G, Solipuram MR (2009) Oxidation of meloxicam by Streptomyces griseus. Iran J Biotechnol 7(3):142–147Google Scholar
  95. Gusek TW, Kinsella JE (1987) Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem J 246(2):511–517PubMedPubMedCentralCrossRefGoogle Scholar
  96. Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M et al (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117(4):413–421PubMedCrossRefGoogle Scholar
  97. Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Lignocellulose conversion. Springer, Berlin Heidelberg, pp 21–38CrossRefGoogle Scholar
  98. Haglund A-L, Törnblom E, Boström B, Tranvik L (2002) Large differences in the fraction of active bacteria in plankton, sediments, and biofilm. Microb Ecol 43(2):232–241PubMedCrossRefGoogle Scholar
  99. Hall HH (1953) Method for the production of vitamin b12 by Streptomyces olivaceus. Google PatentsGoogle Scholar
  100. Hamamoto T, Gunji S, Tsuji H, Beppu T (1983) Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strain and their fermentation, purification and characterization. J Antibiot 36(6):639–645PubMedCrossRefGoogle Scholar
  101. Hamedi J, Mohammadipanah F (2015) Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 42(2):157–171PubMedCrossRefGoogle Scholar
  102. Hamedi J, Dehhaghi M, Mohammdipanah F (2015a) Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran. Int J Environ Res 9(2):475–480Google Scholar
  103. Hamedi J, Moghimi H, Papiran R, Mohammadipanah F (2015b) Screening of phytotoxic activity and nlp genes from rhizosphere actinomycetes. Ann Microbiol 65(1):527–532CrossRefGoogle Scholar
  104. Hamill R, Haney M Jr, Stamper M, Wlley P (1961) Tylosin, a new antibiotic: II. Isolation, properties, and preparation of pesmycosin, a microbiologically active degradation product. Antibiot Chemother 11(5):328–334Google Scholar
  105. Haney ME Jr, Hoehn MM (1966) Monensin, a new biologically active compound. I. Discovery and isolation. Antimicrob Agents Chemother 7:349–352Google Scholar
  106. Hardter U, Luzhetska M, Ebeling S, Bechthold A (2012) Ethanol production in actinomycetes after expression of synthetic adhB and pdc. Open Biotechnol J 6(1):13–16CrossRefGoogle Scholar
  107. Hashimoto M, Komori T, Kamiya T (1976) Nocardicin A, a new monocyclic beta-lactam antibiotic II. Structure determination of nocardicins A and B. J Antibiot 29(9):890–901PubMedCrossRefGoogle Scholar
  108. Hata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R (1956) Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot 9(4):141PubMedGoogle Scholar
  109. Hazen EL, Brown R (1950) Two antifungal agents produced by a soil actinomycete. Science (New York, NY) 112(2911):423–423Google Scholar
  110. Heide L (2014) New aminocoumarin antibiotics as gyrase inhibitors. Int J Med Microbiol 304(1):31–36PubMedCrossRefGoogle Scholar
  111. Heisey RM, Huang J, Mishra SK, Keller JE, Miller JR, Putnam AR, D'Silva TD (1988) Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J Agric Food Chem 36(6):1283–1286CrossRefGoogle Scholar
  112. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1):155–172PubMedCrossRefGoogle Scholar
  113. Hesterkamp T (2015) Antibiotics clinical development and pipeline. Curr Top Microbiol Immunol 398:447–474Google Scholar
  114. Hirsch AM, Valdés M (2010) Micromonospora: an important microbe for biomedicine and potentially for biocontrol and biofuels. Soil Biol Biochem 42(4):536–542CrossRefGoogle Scholar
  115. Hollstein U (1974) Actinomycin. Chemistry and mechanism of action. Chem Rev 74(6):625–652CrossRefGoogle Scholar
  116. Huber G, Schacht U, Weidenmüller H, Schmidt-Thomé J, Duphorn J, Tschesche R (1964) Meonomycin, a new antibiotic. II. Characterization and chemistry. Antimicrob Agents Chemother 5:737–742Google Scholar
  117. Ikeda M (2003) Amino acid production processes. In: Microbial production of l-amino acids. Springer, Berlin, pp 1–35Google Scholar
  118. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196PubMedCrossRefGoogle Scholar
  119. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385PubMedPubMedCentralGoogle Scholar
  120. Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342CrossRefGoogle Scholar
  121. Jacob N, Poorna CA, Prema P (2008) Purification and partial characterization of polygalacturonase from Streptomyces lydicus. Bioresour Technol 99(14):6697–6701PubMedCrossRefGoogle Scholar
  122. Jang H-D, Chen K-S (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol 19(3):263–268CrossRefGoogle Scholar
  123. Jani SA, Chudasama CJ, Patel DB, Bhatt PS, Patel HN (2012) Optimization of extracellular protease production from alkali thermo tolerant actinomycetes: Saccharomonospora viridis SJ-21. Bull Environ Pharmacol Life Sci 1(6):84–92Google Scholar
  124. Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zaraî N, Bejar S (2010) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour Technol 101(21):8361–8369PubMedCrossRefGoogle Scholar
  125. Jenifer JSCA, Donio MBS, Michaelbabu M, Vincent SGP, Citarasu T (2015) Haloalkaliphilic Streptomyces spp. AJ8 isolated from solar salt works and its’ pharmacological potential. AMB Express 5(1):1–12CrossRefGoogle Scholar
  126. Jovetic S, Zhu Y, Marcone GL, Marinelli F, Tramper J (2010) β-lactam and glycopeptide antibiotics: first and last line of defense? Trends Biotechnol 28(12):596–604PubMedCrossRefGoogle Scholar
  127. Juhasz O, Škárka B (1990) Purification and characterization of an extracellular proteinase from Brevibacterium linens. Can J Microbiol 36(7):510–512CrossRefGoogle Scholar
  128. Kafarski P (2012) Rainbow code of biotechnology. CHEMIK Nauka-Technika-Rynek 1(66):811–816Google Scholar
  129. Kahan J, Kahan F, Goegelman R, Currie S, Jackson M, Stapley E et al (1979) Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 32(1):1–12PubMedCrossRefGoogle Scholar
  130. Kahne D, Leimkuhler C, Lu W, Walsh C (2005) Glycopeptide and lipoglycopeptide antibiotics. Chem Rev 105(2):425–448PubMedCrossRefGoogle Scholar
  131. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A et al (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104(1):5–25PubMedCrossRefGoogle Scholar
  132. Kamei T, Suzuki H, Matsuzaki M, Otani T, Kondo H, Nakamura S (1979) Cholesterol esterase produced by Streptomyces lavendulae. II. Purification and properties as a lipolytic enzyme. Chem Pharm Bull 27(7):1704–1707CrossRefGoogle Scholar
  133. Kar S, Ray R (2008) Statistical optimization of alpha-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Polish J Microbiol 57(1):49Google Scholar
  134. Karmakar M, Ray R (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6(1):41CrossRefGoogle Scholar
  135. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9(7):951–960PubMedCrossRefGoogle Scholar
  136. Karthik L, Kumar G, Kirthi AV, Rahuman A, Rao KB (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37(2):261–267PubMedCrossRefGoogle Scholar
  137. Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41(2):267–273CrossRefGoogle Scholar
  138. Kaur N, Rajendran MK, Kaur G, Shanmugam M (2014) Isoptericola rhizophila sp. nov., a novel actinobacterium isolated from rhizosphere soil. Antonie Van Leeuwenhoek 106(2):301–307PubMedCrossRefGoogle Scholar
  139. Kelley I, Freeman J, Evans F, Cerniglia C (1993) Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 59(3):800–806PubMedPubMedCentralGoogle Scholar
  140. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274(1):1–14CrossRefGoogle Scholar
  141. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31(8):1737–1744PubMedCrossRefGoogle Scholar
  142. Khan N, Filonow A, Singleton L (1997) Augmentation of soil with sporangia of Actinoplanes spp. for biological control of Pythium damping-off. Biocontrol Sci Tech 7(1):11–22CrossRefGoogle Scholar
  143. Khosla R, Verma D, Kapur A, Aruna R, Khanna N (1999) Streptogramins: a new class of antibiotics. Indian J Med Sci 53(3):111–119PubMedGoogle Scholar
  144. Kim SB, Goodfellow M (2002) Streptomyces avermitilis sp. nov., nom. rev., a taxonomic home for the avermectin-producing streptomycetes. Int J Syst Evol Microbiol 52(6):2011–2014PubMedGoogle Scholar
  145. Kim YJ, Kim D-O, Chun OK, Shin D-H, Jung H, Lee CY, Wilson DB (2005) Phenolic extraction from apple peel by cellulases from Thermobifida fusca. J Agric Food Chem 53(24):9560–9565PubMedCrossRefGoogle Scholar
  146. Kim YJ, Song JY, Moon MH, Smith CP, Hong S-K, Chang YK (2007) pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3 (2). Appl Microbiol Biotechnol 76(5):1119–1130PubMedCrossRefGoogle Scholar
  147. Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M et al (1987) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot 40(9):1249–1255PubMedCrossRefGoogle Scholar
  148. Kling A, Lukat P, Almeida DV, Bauer A, Fontaine E, Sordello S et al (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348(6239):1106–1112PubMedCrossRefGoogle Scholar
  149. Kluepfel D, Ishaque M (1982) Xylan-induced cellulolytic enzymes in Streptomyces flavogriseus. Dev Ind Microbiol 23:389–396Google Scholar
  150. Kluepfel D, Shareck F, Mondou F, Morosoli R (1986) Characterization of cellulase and xylanase activities of Streptomyces lividans. Appl Microbiol Biotechnol 24(3):230–234CrossRefGoogle Scholar
  151. Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond—systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88(5):1065–1075PubMedCrossRefGoogle Scholar
  152. Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53(6):674–679PubMedCrossRefGoogle Scholar
  153. Krishna P, Arora A, Reddy MS (2008) An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol 24(12):3079–3085CrossRefGoogle Scholar
  154. Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M et al (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242(2):540–547PubMedCrossRefGoogle Scholar
  155. Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B et al (1999) Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci 96(16):9112–9117PubMedPubMedCentralCrossRefGoogle Scholar
  156. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696PubMedPubMedCentralCrossRefGoogle Scholar
  157. Kumar Y, Goodfellow M (2008) Five new members of the Streptomyces violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. Int J Syst Evol Microbiol 58(6):1369–1378PubMedCrossRefGoogle Scholar
  158. Kurane R, Suzuki T, Fukuoka S (1984) Purification and some properties of a phthalate ester hydrolyzing enzyme from Nocardia erythropolis. Appl Microbiol Biotechnol 20(6):378–383CrossRefGoogle Scholar
  159. Lanoot B, Vancanneyt M, Cleenwerck I, Wang L, Li W, Liu Z, Swings J (2002) The search for synonyms among streptomycetes by using SDS-PAGE of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces violaceus. Int J Syst Evol Microbiol 52(3):823–829PubMedGoogle Scholar
  160. LaPlante KL, Rybak MJ (2004) Daptomycin—a novel antibiotic against Gram-positive pathogens. Expert Opin Pharmacother 5(11):2321–2331PubMedCrossRefGoogle Scholar
  161. Latha S, Vinothini G, Calvin DJD, Dhanasekaran D (2016) In vitro probiotic profile based selection of indigenous actinobacterial probiont Streptomyces sp. JD9 for enhanced broiler production. J Biosci Bioeng 121(1):124–131PubMedCrossRefGoogle Scholar
  162. Laxman R, More S (2002) Reduction of hexavalent chromium by Streptomyces griseus. Miner Eng 15(11):831–837CrossRefGoogle Scholar
  163. Lechevalier M, Prauser H, Labeda D, Ruan J-S (1986) Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Evol Microbiol 36(1):29–37Google Scholar
  164. Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34(4):482–492PubMedCrossRefGoogle Scholar
  165. Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB (1987) Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin. gamma. 1I. J Am Chem Soc 109(11):3464–3466CrossRefGoogle Scholar
  166. Lee MD, Manning JK, Williams DR, Kuck NA, Testa RT, Borders DB (1989) Calicheamicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calicheamicins beta 1Br, gamma 1Br, alpha 2I, alpha 3I, beta 1I, gamma 1I and delta 1I. J Antibiot 42(7):1070–1087PubMedCrossRefGoogle Scholar
  167. Lee H-N, Im J-H, Lee M-J, Lee SY, Kim E-S (2009) A putative secreted solute binding protein, SCO6569 is a possible AfsR2-dependent down-regulator of actinorhodin biosynthesis in Streptomyces coelicolor. Process Biochem 44(3):373–377CrossRefGoogle Scholar
  168. Lewis RJ, Tsai FT, Wigley DB (1996) Molecular mechanisms of drug inhibition of DNA gyrase. BioEssays 18(8):661–671PubMedCrossRefGoogle Scholar
  169. Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian P-Y (2006) Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22(3):187–194CrossRefGoogle Scholar
  170. Lin J, Ballim R (2012) Biocorrosion control: current strategies and promising alternatives. Afr J Biotechnol 11(91):15736–15747CrossRefGoogle Scholar
  171. Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236(6):1849–1861PubMedCrossRefGoogle Scholar
  172. Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1, 4-diene-3, 17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27(4):759–765CrossRefGoogle Scholar
  173. Ltd LE (2013) Actinogen collaboration with Leaf Energy Ltd on certain bacterial strains from the Actinomycetes family relevant to leaf energy’s glycerol pretreatment processGoogle Scholar
  174. Luepke KH, Suda KJ, Boucher H, Russo RL, Bonney MW, Hunt TD, Mohr JF (2017) Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 37(1):71–84Google Scholar
  175. Luthra U, Khadpekar S, Trivedi A, Shetty A, Kumar H (2015) Biotransformation of 4-androstene-3, 17-dione to androst-1, 4-diene-3, 17-dione by nocardioides simplex. World J Pharm Pharm Sci 4(11):1935–1943Google Scholar
  176. Maiese WM, Lechevalier MP, Lechevalier HA, Korshalla J, Kuck N, Fantini A et al (1989) Calicheamicins, a novel family of antitumor antibiotics. Taxonomy, fermentation and biological properties. J Antibiot 42(4):558–563PubMedCrossRefGoogle Scholar
  177. Mancy D, Ninet L, Preud HJ (1973) Antibiotic 18,887 rp. Google PatentsGoogle Scholar
  178. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872CrossRefGoogle Scholar
  179. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S-K (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int 2013:1–9Google Scholar
  180. Manuel SL, Erika K, Mauricio AC (2013) Cadmium bioremediation by a resistant Streptomyces strain. In: Actinobacteria: application in bioremediation and production of industrial enzymes. CRC Press, Boca Raton, p 122Google Scholar
  181. Margalith P, Beretta G (1960) Rifomycin. XI. Taxonomic study on streptomyces mediterranei nov. sp. Mycopathol Mycol Appl 13(4):321–330CrossRefGoogle Scholar
  182. Martens J-H, Barg H, Warren M, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58(3):275–285PubMedCrossRefGoogle Scholar
  183. Marui M, Nakanishi K, Yasui T (1985) Purification and properties of three types of xylanases induced by methyl β-xyloside from Streptomyces sp. Agric Biol Chem 49(12):3399–3407CrossRefGoogle Scholar
  184. Mason D, Dietz A, DeBoer C (1963) Lincomycin, a new antibiotic. I. Discovery and biological properties. Antimicrob Agents Chemother 1962:554–559Google Scholar
  185. McCarthy AJ, Peace E, Broda P (1985) Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl Microbiol Biotechnol 21(3–4):238–244CrossRefGoogle Scholar
  186. McCormick MH, McGuire J, Pittenger G, Pittenger R, Stark W (1954) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu 3:606–611Google Scholar
  187. McGuire JM, Bunch R, Anderson R, Boaz H, Flynn E, Powell H, Smith J (1952) Ilotycin, a new antibiotic. Antibiot Chemother (Northfield, IL) 2(6):281–283Google Scholar
  188. McKillop C, Elvin P, Kenten J (1986) Cloning and expression of an extracellular α-amylase gene from Streptomyces hygroscopicus in Streptomyces lividans 66. FEMS Microbiol Lett 36(1):3–7Google Scholar
  189. McMurry L, Levy S (2000) Tetracycline resistance in gram-positive bacteria. Gram-positive pathogens. ASM Press, Washington, DC, pp 660–677Google Scholar
  190. Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S et al (2010) Labyrinthopeptine—eine neue Klasse carbacyclischer Lantibiotika. Angew Chem 122(6):1169–1173CrossRefGoogle Scholar
  191. Mertz JL, Peloso JS, Barker BJ, Babbitt GE, Occolowitz JL, Simson VL, Kline RM (1986) Isolation and structural identification of nine avilamycins. J Antibiot 39(7):877–887PubMedCrossRefGoogle Scholar
  192. Meyers BR, Kaplan K, Weinstein L (1969) Microbiological and pharmacological behaviour of 7-chloro-lincomycin. Appl Microbiol 17:653–655PubMedPubMedCentralGoogle Scholar
  193. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329PubMedCrossRefGoogle Scholar
  194. Mienda B, Yahya A, Galadima I, Shamsir M (2014) An overview of microbial proteases for industrial applications. Res J Pharm Biol Chem Sci 5:388–396Google Scholar
  195. Miller TW, Chaiet L, Cole DJ, Cole LJ, Flor JE, Goegelman RT et al (1979) Avermectins, new family of potent anthelmintic agents: isolation and chromatographic properties. Antimicrob Agents Chemother 15(3):368–371PubMedPubMedCentralCrossRefGoogle Scholar
  196. Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43(4):727–737PubMedPubMedCentralGoogle Scholar
  197. Mitscher LA, Juvarkar JV, Rosenbrook W Jr, Andres WW, Schenck JR, Egan RS (1970) Structure of chelocardin, a novel tetracycline antibiotic. J Am Chem Soc 92(20):6070–6071PubMedCrossRefGoogle Scholar
  198. Modi C, Mody S, Patel H, Dudhatra G, Kumar A, Sheikh T (2011) Growth promoting use of antimicrobial agents in animals. J Appl Pharm Sci 1(8):33–36Google Scholar
  199. Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff D (1986) Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int J Syst Evol Microbiol 36(3):435–443Google Scholar
  200. Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22(4):615–624PubMedCrossRefGoogle Scholar
  201. Mordarski M, Wieczorek J, Jaworska B (1969) On the conditions of amylase production by actinomycetes. Arch Immunol Ther Exp 18(3):375–381Google Scholar
  202. Moreira A, Phillips J, Humphrey A (1981) Production of cellulases by Thermomonospora sp. Biotechnol Bioeng 23(6):1339–1347CrossRefGoogle Scholar
  203. Moreira K, Albuquerque B, Teixeira M, Porto A, Lima Filho J (2002) Application of protease from Nocardiopsis sp. as a laundry detergent additive. World J Microbiol Biotechnol 18(4):309–315CrossRefGoogle Scholar
  204. Mukthavaram R, Jiang P, Saklecha R, Simbery D, Bharati R, Nomura N, Chao Y, Pastorino S (2013) High-efficiency liposomal encapsulation of the tyrosine kinase inhibitor leads to improve in vivo toxicity and tumor response profile. Int J Nanomedicine 8:3991–4006PubMedPubMedCentralGoogle Scholar
  205. Müller L (1989) Chemistry, biochemistry and therapeutic potential of microbial α-glucosidase inhibitors. In: NoVel microbial products for medicine and agriculture. Springer, New York, pp 109–116Google Scholar
  206. Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304(1):3–13PubMedCrossRefGoogle Scholar
  207. Müller L, Junge B, Frommer W, Schmidt D, Truscheit E (1980) Acarbose (BAYg5421) and homologous α-glucosidase inhibitors from actinoplanaceae. Enzyme inhibitors. Verlag Chemie, Weinheim, pp 109–122Google Scholar
  208. Murakami T, Burian J, Yanai K, Bibb MJ, Thompson CJ (2011) A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in Streptomyces coelicolor. Proc Natl Acad Sci 108(38):16020–16025PubMedPubMedCentralCrossRefGoogle Scholar
  209. Nagoba B, Vedpathak DV (2011) Medical applications of Siderophores—a review. Eur J Gen Med 8(3):229–235Google Scholar
  210. Nakajima T, Tsukamoto K-I, Watanabe T, Kainuma K, Matsuda K (1984) Purification and some properties of an endo-1, 4-β-d-xylanase from Streptomyces sp. J Ferment Technol 62(3):269–276Google Scholar
  211. Nawani N, Kapadnis B, Das A, Rao A, Mahajan S (2002) Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J Appl Microbiol 93(6):965–975PubMedCrossRefGoogle Scholar
  212. Nicolaou K, Dai WM (1991) Chemie und Biologie von Endiin-Cytostatica/Antibiotica. Angew Chem 103(11):1453–1481CrossRefGoogle Scholar
  213. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3(3):597–611Google Scholar
  214. Nigam V, Khandelwal A, Gothwal R, Mohan M, Choudhury B, Vidyarthi A, Ghosh P (2009) Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci 34(1):21–26PubMedCrossRefGoogle Scholar
  215. Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Appl Sci J 7(7):907–916Google Scholar
  216. Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T (1994) Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269(9):6320–6324Google Scholar
  217. Nlshida H, Sakakibara T, Aoki F, Saito T, Ichikawa K, Inagaki T et al (1995) Generation of novel rapamycin structures by microbial manipulations. J Antibiot 48(7):657–666CrossRefGoogle Scholar
  218. Okazaki T, Ono M, Aoki A, Fukuda R (1983) Milbemycins, a new family of macrolide antibiotics: producing organism and its mutants. J Antibiot 36(4):438–441PubMedCrossRefGoogle Scholar
  219. Okazaki T, Takahashi K, Kizuka M, Enokita R (1995) Studies on actinomycetes isolated from plant leaves. Annu Rep Sankyo Res Lab 47:97–106Google Scholar
  220. Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68(4):475–480PubMedCrossRefGoogle Scholar
  221. Oliver T, Prokop J, Bower R, Otto R (1962) Chelocardin, a new broad-spectrum antibiotic. I. Discovery and biological properties. Antimicrob Agents Chemother:583–591Google Scholar
  222. Omura S, Sasaki Y, Iwai Y, Takeshima H (1995) Staurosporine, a potentially important gift from a microorganism. J Antibiot 48(7):535–548PubMedCrossRefGoogle Scholar
  223. Oppolzer W, Prelog V, Sensi P (1964) The composition of rifamycin B and related rifamycins. Experientia 20(6):336–339PubMedCrossRefGoogle Scholar
  224. Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105(3):439–460PubMedCrossRefGoogle Scholar
  225. Oyama H, Kinjoh M, Watari M, Murao S (1997) Purification and characterization of an alkaline proteinase produced by Pimelobacter sp. Z-483. J Ferment Bioeng 84(4):351–353CrossRefGoogle Scholar
  226. Oza G, Pandey S, Gupta A, Kesarkar R, Sharon M (2012) Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. J Microbiol Biotechnol Res 2:511–515Google Scholar
  227. Pacheco da Rosa J, Korenblum E, Franco-Cirigliano MN, Abreu F, Lins U, Soares R et al (2013) Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. BioMed Res Int 2013:309769PubMedPubMedCentralCrossRefGoogle Scholar
  228. Pattanapipitpaisal P, Brown N, Macaskie L (2001) Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol Lett 23(1):61–65CrossRefGoogle Scholar
  229. Pervaiz I, Ahmad S, Madni M, Ahmad H, Khaliq F (2013) Microbial biotransformation: a tool for drug designing. Appl Biochem Microbiol 49(5):437–450CrossRefGoogle Scholar
  230. Pillmoor JB (1998) Carbocyclic coformycin: a case study of the opportunities and pitfalls in the industrial search for new agrochemicals from nature. Pestic Sci 52(1):75–80CrossRefGoogle Scholar
  231. Polti MA, García RO, Amoroso MJ, Abate CM (2009) Bioremediation of chromium (VI) contaminated soil by Streptomyces sp. MC1. J Basic Microbiol 49(3):285–292PubMedCrossRefGoogle Scholar
  232. Ponmariappan S, Maruthamuthu S, Palaniswamy N, Palaniappan R (2004) Corrosion control by bacterial biofilms—an overview. Corros Rev 22(4):307–324CrossRefGoogle Scholar
  233. Prakash S, Ramasubburayan R, Iyapparaj P, Arthi APR, Ahila NK, Ramkumar VS et al (2015) Environmentally benign antifouling potentials of triterpene-glycosides from Streptomyces fradiae: a mangrove isolate. RSC Adv 5(37):29524–29534CrossRefGoogle Scholar
  234. Prakasham RS, Buddana S, Yannam S, Guntuku G (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621PubMedCrossRefGoogle Scholar
  235. Pramanik A, Stroeher UH, Krejci J, Standish AJ, Bohn E, Paton JC et al (2007) Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int J Med Microbiol 297(6):459–469PubMedCrossRefGoogle Scholar
  236. Prasad GS, Girisham S, Reddy S (2010) Microbial transformation of albendazole. Indian J Expt Biol 48:415–420Google Scholar
  237. Purushe S, Prakash D, Nawani NN, Dhakephalkar P, Kapadnis B (2012) Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresour Technol 115:2–7PubMedCrossRefGoogle Scholar
  238. Purushothaman Y (2015) Process optimization and transesterification of Jatropha curcas L oil by Actinomycetes lipases for biodiesel productionGoogle Scholar
  239. Putter I, Mac Connell J, Preiser F, Haidri A, Ristich S, Dybas R (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964CrossRefGoogle Scholar
  240. Qian P, Xu Y, Zhou X, He H, Fusetani N, Dai W-M (2012) Antifouling furan-2-one derivatives. Google PatentsGoogle Scholar
  241. Rebstock MC, Crooks HM, Controulis J, Bartz QR (1949) Chloramphenicol (chloromycetin). 1 IV. 1a chemical studies. J Am Chem Soc 71(7):2458–2462CrossRefGoogle Scholar
  242. Rene’N H, Apel WA, Thompson VS, Sheridan PP (2006) Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol 6(1):1CrossRefGoogle Scholar
  243. Rifaat HM, Hassanein SM, El-Said OH, Saleh SA, Selim MS (2005) Purification and characterisation of extracellular neutral protease from Streptomyces microflavus. Arab J Biotechnol 9:51–60575Google Scholar
  244. Rohamare S, Gaikwad S, Jones D, Bhavnani V, Pal J, Sharma R, Chatterjee P (2015) Cloning, expression and in silico studies of a serine protease from a marine actinomycete (Nocardiopsis sp. NCIM 5124). Process Biochem 50(3):378–387CrossRefGoogle Scholar
  245. Rurangwa E, Verdegem MC (2015) Microorganisms in recirculating aquaculture systems and their management. Rev Aquac 7(2):117–130CrossRefGoogle Scholar
  246. Sabaratnam S, Traquair JA (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biol Control 23(3):245–253CrossRefGoogle Scholar
  247. Sadhasivam S, Shanmugam P, Yun K (2010) Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B: Biointerfaces 81(1):358–362PubMedCrossRefGoogle Scholar
  248. Samundeeswari A, Dhas SP, Nirmala J, John SP, Mukherjee A, Chandrasekaran N (2012) Biosynthesis of silver nanoparticles using actinobacterium Streptomyces albogriseolus and its antibacterial activity. Biotechnol Appl Biochem 59(6):503–507PubMedCrossRefGoogle Scholar
  249. Saraf M, Hastings A (2010) Biofuels, the role of biotechnology to improve their sustainability and profitability. In: Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Dordrecht, pp 123–148CrossRefGoogle Scholar
  250. Saxena S (2015) Applied microbiology. Springer, New DelhiCrossRefGoogle Scholar
  251. Scheinfeld N (2003) Telithromycin: a brief review of a new ketolide antibiotic. J Drugs Dermatol 3(4):409–413Google Scholar
  252. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760PubMedCrossRefGoogle Scholar
  253. Schlehuber S, Skerra A (2005) Anticalins as an alternative to antibody technology. Expert Opin Biol Ther 5(11):1453–1462PubMedCrossRefGoogle Scholar
  254. Schmidt A, Haferburg G, Sineriz M, Merten D, Büchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erde-Geochem 65:131–144CrossRefGoogle Scholar
  255. Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz [a] anthracene, and benzo [a] pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62(1):13–19PubMedPubMedCentralGoogle Scholar
  256. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30(1):47–49PubMedPubMedCentralCrossRefGoogle Scholar
  257. Schrijver AD, Mot RD (1999) Degradation of pesticides by actinomycetes. Crit Rev Microbiol 25(2):85–119PubMedCrossRefGoogle Scholar
  258. Sebek O, Perlman D (1979) Microbial transformation of steroids and sterols. Microb Technol Microb Process 1:483–496Google Scholar
  259. Sehgal S, Baker H, Vézina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot 28(10):727–732PubMedCrossRefGoogle Scholar
  260. Sekizawa Y, Takematsu T (2013) How to discover new antibiotics for herbicidal use. Paper presented at the natural products: proceedings of the 5th international congress of pesticide chemistry, Kyoto, Japan, 29 Aug–4 Sept 1982Google Scholar
  261. Sensi P, Greco A, Ballotta R (1958) Rifomycin. I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu 7:262–270Google Scholar
  262. Shanmugasundaram T, Radhakrishnan M, Gopikrishnan V, Pazhanimurugan R, Balagurunathan R (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids Surf B: Biointerfaces 111:680–687PubMedCrossRefGoogle Scholar
  263. Shen B, Du L, Sanchez C, Chen M, Edwards DJ (1999) Bleomycin biosynthesis in Streptomyces verticillus ATCC15003: a model of hybrid peptide and polyketide biosynthesis. Bioorg Chem 27(2):155–171CrossRefGoogle Scholar
  264. Shen M, Liu Z-Q, Zheng Y-G, Shen Y-C (2009) Enhancing endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioprocess Eng 14(6):795–802CrossRefGoogle Scholar
  265. Shiio I, Ôtsuka S-I, Katsuya N (1963) Cellular permeability and extracellular formation of glutamic acid in Brevibacterium flavum. J Biochem 53(5):333–340PubMedCrossRefGoogle Scholar
  266. Shimizu M (2011) Endophytic actinomycetes: biocontrol agents and growth promoters. In: Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 201–220CrossRefGoogle Scholar
  267. Shivlata L, Satyanarayana T (2015) Thermophilic and alkaliphilic actinobacteria: biology and potential applications. Front Microbiol 6:1014PubMedPubMedCentralCrossRefGoogle Scholar
  268. Siñeriz ML, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49(S1):S55–S62PubMedCrossRefGoogle Scholar
  269. Soetaert W, Vandamme E (2006) The impact of industrial biotechnology. Biotechnol J 1(7–8):756–769PubMedCrossRefGoogle Scholar
  270. Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27(9):2195–2202CrossRefGoogle Scholar
  271. Somma S, Gastaldo L, Corti A (1984) Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrob Agents Chemother 26(6):917–923PubMedPubMedCentralCrossRefGoogle Scholar
  272. Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI (2009) Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59(2):248–253PubMedCrossRefGoogle Scholar
  273. Sorokin D, Tourova T, Sukhacheva M, Mardanov A, Ravin N (2012) Bacterial chitin utilisation at extremely haloalkaline conditions. Extremophiles 16(6):883–894PubMedCrossRefGoogle Scholar
  274. Souza PM (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41(4):850–861PubMedPubMedCentralCrossRefGoogle Scholar
  275. Stamford T, Stamford N, Coelho L, Araujo J (2001) Production and characterization of a thermostable α-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 76(2):137–141PubMedCrossRefGoogle Scholar
  276. Stefanska AL, Fulston M, Houge-Frydrych CS, Jones JJ, Warr SR (2000) A potent seryl tRNA synthetase inhibitor SB-217452 isolated from a Streptomyces species. J Antibiot 53(12):1346–1353PubMedCrossRefGoogle Scholar
  277. Stutzenberger FJ (1971) Cellulase production by Thermomonospora curvata isolated from municipal solid waste compost. Appl Microbiol 22(2):147–152PubMedPubMedCentralGoogle Scholar
  278. Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24(1):83–90PubMedPubMedCentralGoogle Scholar
  279. Stutzenberger F, Carnell R (1977) Amylase production by thermomonospora curvata. Appl Environ Microbiol 34(2):234PubMedPubMedCentralGoogle Scholar
  280. Suganuma T, Mizukami T, Moori K-I, Ohnishi M, Hiromi K (1980) Studies of the action pattern of an α-amylase from Streptomyces praecox NA-273. J Biochem 88(1):131–138PubMedGoogle Scholar
  281. Sugiyama T, Sugito H, Mamiya K, Suzuki Y, Ando K, Ohnuki T (2012) Hexavalent chromium reduction by an actinobacterium Flexivirga alba ST13 T in the family Dermacoccaceae. J Biosci Bioeng 113(3):367–371PubMedCrossRefGoogle Scholar
  282. Takahashi Y, Matsumoto A, Seino A, Ueno J, Iwai Y, Omura S (2002) Streptomyces avermectinius sp. nov., an avermectin-producing strain. Int J Syst Evol Microbiol 52(6):2163–2168PubMedGoogle Scholar
  283. Takegawa K, Mai L, Miyauchi C, Iwahara S (1993) Purification and characterization of alkaline proteinase from Arthrobacter protophormiae. Technical Bulletin of Faculty of Agriculture-Kagawa University, JapanGoogle Scholar
  284. Takeshima H (1992) Antiviral agents, in The Search for Bioactive Compounds from Microorganisms, Springer Science & Business Media: 45–62Google Scholar
  285. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 76(21):7154–7160PubMedPubMedCentralCrossRefGoogle Scholar
  286. Takiguchi Y, Mishima H, Okuda M, Terao M, Aoki A, Fukuda R (1980) Milbemycins, a new family of macrolide antibiotics: fermentation, isolation and physico-chemical properties. J Antibiot 33(10):1120–1127PubMedCrossRefGoogle Scholar
  287. Takita T, Muraoka Y, Yoshioka T, Fujii A, Maeda K, Umezawa H (1972) The chemistry of bleomycin. IX. J Antibiot 25(12):755–758PubMedCrossRefGoogle Scholar
  288. Tanaka Y (1992) Antifungal Agents in The search for bioactive compounds from microorganisms Satoshi Omura (ed.), Springer, New YorkGoogle Scholar
  289. Terlain B, Thomas J (1971) Structure of griselimycin, polypeptide antibiotic extracted Streptomyces cultures. I. Identification of the products liberated by hydrolysis. Bull Soc Chim Fr 6:2349–2356PubMedGoogle Scholar
  290. Thomas KV, Fileman TW, Readman JW, Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull 42(8):677–688PubMedCrossRefGoogle Scholar
  291. Tominaga Y, Tsujisaka Y (1976) Purifications and some properties of two chitinases from Streptomyces orientalis which lyse Rhizopus cell wall. Agric Biol Chem 40(12):2325–2333Google Scholar
  292. Torres-Chavolla E, Ranasinghe RJ, Alocilja EC (2010) Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. IEEE Trans Nanotechnol 9(5):533–538CrossRefGoogle Scholar
  293. Touioui SB, Jaouadi NZ, Boudjella H, Ferradji FZ, Belhoul M, Rekik H et al (2015) Purification and biochemical characterization of two detergent-stable serine alkaline proteases from Streptomyces sp. strain AH4. World J Microbiol Biotechnol 31(7):1079–1092PubMedCrossRefGoogle Scholar
  294. Trejo WH, Bennett R (1963) Streptomyces nodosus sp. n., the amphotericin-producing organism. J Bacteriol 85(2):436–439PubMedPubMedCentralGoogle Scholar
  295. Truscheit E, Frommer W, Junge B, Müller L, Schmidt DD, Wingender W (1981) Chemie und Biochemie mikrobieller α-Glucosidasen-Inhibitoren. Angew Chem 93(9):738–755CrossRefGoogle Scholar
  296. Tseng M, Liao H-C, Chiang W-P, Yuan G-F (2011) Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 61(7):1667–1670PubMedCrossRefGoogle Scholar
  297. Tsibakhashvili NY, Kirkesali EI, Pataraya DT, Gurielidze MA, Kalabegishvili TL, Gvarjaladze DN et al (2011) Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis. Adv Sci Lett 4(11–12):3408–3417CrossRefGoogle Scholar
  298. Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y (1990) Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. J Appl Bacteriol 69(4):520–529PubMedCrossRefGoogle Scholar
  299. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot 19(5):200PubMedGoogle Scholar
  300. Umezawa S, Tatsuta K, Fujcmoto K, Tsuchiya T, Umezawa H, Naganawa H (1972) Structure of antipain, a new sakagughi-positive product of streptomyces. J Antibiot 25(4):267–270PubMedCrossRefGoogle Scholar
  301. Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T (1976) Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot 29(1):97–99PubMedCrossRefGoogle Scholar
  302. Vaijayanthi G, Vijayakumar R, Dhanasekaran D (2016) Actinobacteria—a biofactory of novel enzymesCrossRefGoogle Scholar
  303. Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569PubMedCrossRefGoogle Scholar
  304. Veldkamp H, Van Den Berg G, Zevenhuizen L (1963) Glutamic acid production by Arthrobacter globiformis. Antonie Van Leeuwenhoek 29(1):35–51PubMedCrossRefGoogle Scholar
  305. Vértesy L, Aretz W, Fehlhaber HW, Kogler H (1995) Salmycin A–D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv Chim Acta 78(1):46–60CrossRefGoogle Scholar
  306. Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28(10):721–726PubMedCrossRefGoogle Scholar
  307. Vicente M, Basilio A, Cabello A, Peláez F (2003) Microbial natural products as a source of antifungals. Clinical microbiology and infection 9(1):15–32Google Scholar
  308. Vickers AA, Chopra I, O’neill AJ (2007) Intrinsic novobiocin resistance in Staphylococcus saprophyticus. Antimicrob Agents Chemother 51(12):4484–4485PubMedPubMedCentralCrossRefGoogle Scholar
  309. Viikari L, Alapuranen M, Puranen T, Vehmaanperä J, Siika-Aho M (2007) Thermostable enzymes in lignocellulose hydrolysis. In: Biofuels. Springer, Berlin, pp 121–145CrossRefGoogle Scholar
  310. Volkland HP, Harms H, Knopf K, Wanner O, Zehnder AJ (2000) Corrosion inhibition of mild steel by bacteria. Biofouling 15(4):287–297CrossRefGoogle Scholar
  311. Waksman SA, Woodruff HB (1940) Bacteriostatic and bactericidal substances produced by a soil actinomyces. Exp Biol Med 45(2):609–614CrossRefGoogle Scholar
  312. Waksman SA, Woodruff HB (1941) Actinomyces antibioticus, a new soil organism antagonistic to pathogenic and non-pathogenic bacteria. J Bacteriol 42(2):231PubMedPubMedCentralGoogle Scholar
  313. Walter U, Beyer M, Klein J, Rehm H-J (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34(5):671–676CrossRefGoogle Scholar
  314. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15–26PubMedCrossRefGoogle Scholar
  315. Weigel A (2003) Triple-threat microbe gained powers from another bug. Science 302(5650):1488CrossRefGoogle Scholar
  316. Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58PubMedCrossRefGoogle Scholar
  317. Wink JM, Kroppenstedt RM, Ganguli BN, Nadkarni SR, Schumann P, Seibert G, Stackebrandt E (2003) Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. keratiniphila subsp. nogabecina subsp. nov. Syst Appl Microbiol 26(1):38–46PubMedCrossRefGoogle Scholar
  318. Wink J, Gandhi J, Kroppenstedt RM, Seibert G, Sträubler B, Schumann P, Stackebrandt E (2004) Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology. Int J Syst Evol Microbiol 54(1):235–239PubMedCrossRefGoogle Scholar
  319. Wink JM, Kroppenstedt RM, Schumann P, Seibert G, Stackebrandt E (2006) Actinoplanes liguriensis sp. nov. and Actinoplanes teichomyceticus sp. nov. Int J Syst Evol Microbiol 56(9):2125–2130PubMedCrossRefGoogle Scholar
  320. Wink J, Schumann P, Atasayar E, Klenk H-P, Zaburannyi N, Westermann M, Kämpfer P (2017) ‘Streptomyces caelicus’, an antibioticproducing species of the genus Streptomyces, and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonyms of Streptomyces muensis Ningthoujam et al. 2014. Int J Syst Evol Microbiol 67(3):548–556Google Scholar
  321. Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23(3):285–295CrossRefGoogle Scholar
  322. Xin Y, Sun Z, Chen Q, Wang J, Wang Y, Luogong L et al (2015) Purification and characterization of a novel extracellular thermostable alkaline protease from Streptomyces sp. M30. J Microbiol Biotechnol 25(11):1944PubMedCrossRefGoogle Scholar
  323. Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H et al (2010) Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol 101(4):1331–1336PubMedCrossRefGoogle Scholar
  324. Yamada O, Kaise Y, Futatsuya F, Ishida S, Ito K, Yamamoto H, Munakata K (1972) Studies on plant growth-regulating activities of anisomycin and toyocamycin. Agric Biol Chem 36(11):2013–2015CrossRefGoogle Scholar
  325. YanChu S (1993) New developments of agricultural antibiotic pesticide. Trans (China) 15(6):5–12Google Scholar
  326. Yang C-H, Liu W-H (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enzym Microb Technol 35(2):254–260CrossRefGoogle Scholar
  327. Yang C-H, Liu W-H (2007) Cloning and characterization of a maltotriose-producing α-amylase gene from Thermobifida fusca. J Ind Microbiol Biotechnol 34(4):325–330PubMedCrossRefGoogle Scholar
  328. You J, Cao L, Liu G, Zhou S, Tan H, Lin Y (2005) Isolation and characterization of actinomycetes antagonistic to pathogenic Vibrio spp. from nearshore marine sediments. World J Microbiol Biotechnol 21(5):679–682CrossRefGoogle Scholar
  329. Zhanel GG, Walters M, Noreddin A, Vercaigne LM, Wierzbowski A, Embil JM et al (2002) The ketolides: a critical review. Drugs 62(12):1771–1804PubMedCrossRefGoogle Scholar
  330. Zhang J, Wang M, Sun H, Li X, Zhong L (2009) Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. Afr J Biotechnol 8(20):5467–5475Google Scholar
  331. Zhang J, Siika-Aho M, Puranen T, Tang M, Tenkanen M, Viikari L (2011) Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 4(1):1CrossRefGoogle Scholar
  332. Zhou Q, Li K, Jun X, Bo L (2009) Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour Technol 100(16):3780–3786PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Javad Hamedi
    • 1
    • 2
    Email author
  • Naghmeh Poorinmohammad
    • 1
    • 2
  • Joachim Wink
    • 3
  1. 1.Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of Science, University of TehranTehranIran
  2. 2.Microbial Technology and Products Research CenterUniversity of TehranTehranIran
  3. 3.Helmholtz Center for Infection ResearchBraunschweigGermany

Personalised recommendations