Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 211 Accesses

Abstract

This chapter contains the theory and protocols of experimental techniques used in this work, as well as details on the materials and methods for each experiment that was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scorpio, R.: Fundamentals of Acids, Bases, Buffers and Their Application to Biochemical Systems. Kendall/Hunt Publishing Company (2000)

    Google Scholar 

  2. Förster, H.: Uv/Vis Spectroscopy. In Characterization I, pp 337–426. Springer (2004)

    Google Scholar 

  3. Koch, A.L.: Turbidity measurements of bacterial cultures in some available commercial instruments. Anal. Biochem. 38(1), 252–259 (1970)

    Article  Google Scholar 

  4. Goodwin, T., Morton, R.: The spectrophotometric determination of tyrosine and tryptophan in proteins. Biochem. J. 40(5–6), 628 (1946)

    Google Scholar 

  5. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer Science & Business Media (2013)

    Google Scholar 

  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1), 248–254 (1976)

    Article  Google Scholar 

  7. Sober, H.A., Gutter, F.J., Wyckoff, M.M., Peterson, E.A.: Chromatography of proteins. Ii. Fractionation of serum protein on anion-exchange cellulose. J. Am. Chem. Soc. 78(4), 756–763 (1956)

    Article  Google Scholar 

  8. Wu, C.-S.: Handbook of Size Exclusion Chromatography and Related Techniques: Revised and Expanded, vol. 91. CRC Press (2003)

    Google Scholar 

  9. Boyes, E., Gai, P.: Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67(1), 219–232 (1997)

    Article  Google Scholar 

  10. Brakenhoff, G., Blom, P., Barends, P.: Confocal scanning light microscopy with high aperture immersion lenses. J. Microscopy (Oxford) 117(2), 219–232 (1979)

    Google Scholar 

  11. Brenner, S., Horne, R.: A negative staining method for high resolution electron microscopy of viruses. Biochem. Biophys. Acta. 34, 103–110 (1959)

    Article  Google Scholar 

  12. Hopwood, D.: Theoretical and practical aspects of glutaraldehyde fixation. Histochem. J. 4(4), 267–303 (1972)

    Article  Google Scholar 

  13. Bancroft, J.D., Gamble, M.: Theory and Practice of Histological Techniques. Elsevier Health Sciences (2008)

    Google Scholar 

  14. Bernhard, W.: A new staining procedure for electron microscopical cytology. J. Ultrastruct. Res. 27(3), 250–265 (1969)

    Article  Google Scholar 

  15. Daddow, L.: An abbreviated method of the double lead stain technique. J. Submicrosc. Cytol. 18(1), 221–224 (1986)

    Google Scholar 

  16. Pecora, R.: Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2(2), 123–131 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Goldburg, W.: Dynamic light scattering. Am. J. Phys. 67(12), 1152–1160 (1999)

    Article  ADS  Google Scholar 

  18. O’Brien, R.W., White, L.R.: Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 74, 1607–1626 (1978)

    Article  Google Scholar 

  19. Miller, J.F., Schätzel, K., Vincent, B.: The determination of very small electrophoretic mobilities in polar and nonpolar colloidal dispersions using phase analysis light scattering. J. Colloid Interface Sci. 143(2), 532–554 (1991)

    Article  Google Scholar 

  20. Hillenkamp, F., Karas, M., Beavis, R.C., Chait, B.T.: Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63(24), 1193A–1203A (1991)

    Article  Google Scholar 

  21. Opsal, R.B., Owens, K.G., Reilly, J.P.: Resolution in the linear time-of-flight mass spectrometer. Anal. Chem. 57(9), 1884–1889 (1985)

    Article  Google Scholar 

  22. Hou, X., Jones, B.T.: Inductively coupled plasma‐optical emission spectrometry. Encyclopedia of Analytical Chemistry (2000)

    Google Scholar 

  23. Mercereau, J.: Superconducting magnetometers. Revue de physique appliquée 5(1), 13–20 (1970)

    Article  Google Scholar 

  24. Clarke, J.: Principles and applications of squids. Proc. IEEE 77(8), 1208–1223 (1989)

    Article  ADS  Google Scholar 

  25. Pykett, I.L., et al.: Principles of nuclear magnetic resonance imaging. Radiology 143(1), 157–168 (1982)

    Article  Google Scholar 

  26. Bloembergen, N., Purcell, E.M., Pound, R.V.: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73(7), 679 (1948)

    Google Scholar 

  27. Rehr, R.B., et al.: Improved in vivo magnetic resonance imaging of acute myocardial infarction after intravenous paramagnetic contrast agent administration. Am J. Cardiol. 57(10), 864–868 (1986)

    Article  Google Scholar 

  28. Bydder, G., Hajnal, J., Young, I.: MRI: use of the inversion recovery pulse sequence. Clin. Radiol. 53(3), 159–176 (1998)

    Article  Google Scholar 

  29. Okuda, M., Eloi, J.C., Sarua, A., Jones, S.E.W., Schwarzacher, W.: Energy barrier distribution for dispersed mixed oxide magnetic nanoparticles. J. Appl. Phys. 111(7) (2012)

    Google Scholar 

  30. Okuda, M., Eloi, J.-C., Jones, S.E.W., Sarua, A., Richardson, R.M., Schwarzacher, W.: Fe3o4 Nanoparticles: protein-mediated crystalline magnetic superstructures. Nanotechnology 23(41), 415601 (2012)

    Google Scholar 

  31. Danon, D., Skutelsk, E., Marikovs, Y., Goldstei, L.: Use of cationized ferritin as a label of negative charges on cell surfaces. J. Ultrastruct. Res. 38(5–6), 500–510 (1972)

    Google Scholar 

  32. Perriman, A.W., Cölfen, H., Hughes, R.W., Barrie, C.L., Mann, S.: Solvent-free protein liquids and liquid crystals. Angew. Chem. Int. Ed. 48(34), 6242–6246 (2009)

    Article  Google Scholar 

  33. Fox, C.H., Johnson, F.B., Whiting, J., Roller, P.P.: Formaldehyde fixation. J. Histochem. Cytochem. 33(8), 845–853 (1985)

    Article  Google Scholar 

  34. Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R.: Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols (5), pdb. prot4986 (2008)

    Google Scholar 

  35. Marshall, P., Horobin, R.: The mechanism of action of “Mordant” dyes—a study using preformed metal complexes. Histochemie 35(4), 361–371 (1973)

    Article  Google Scholar 

  36. Waheed, A., Rao, K.S., Gupta, P.: Mechanism of dye binding in the protein assay using eosin dyes. Anal. Biochem. 287(1), 73–79 (2000)

    Article  Google Scholar 

  37. Rosenberg, L.: Chemical basis for the histological use of safranin o in the study of articular cartilage. J. Bone Joint Surg. 53(1), 69–82 (1971)

    Article  Google Scholar 

  38. Martin, I., Obradovic, B., Freed, L.E., Vunjak-Novakovic, G.: Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27(5), 656–662 (1999)

    Article  Google Scholar 

  39. Kiernan, J.A.: Anionic counterstains. Cold Spring Harbor Protocols (7), pdb. top51 (2008)

    Google Scholar 

  40. Bruns, R.R., Palade, G.E.: Studies on blood capillaries Ii. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol. 37(2), 277–299 (1968)

    Article  Google Scholar 

  41. Sundberg, D.R., Broman, H.: The application of the prussian blue stain to previously stained films of blood and bone marrow. Blood 10(2), 160–166 (1955)

    Google Scholar 

  42. Schöpf, B., et al.: Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (Spion) in synovial cells of sheep. J. Magn. Magn. Mater. 293(1), 411–418 (2005)

    Article  ADS  Google Scholar 

  43. Frank, M., Dapson, R., Wickersham, T., Kiernan, J.: Certification procedures for nuclear fast red (Kernechtrot), Ci 60760. Biotech. Histochem. 82(1), 35–39 (2007)

    Article  Google Scholar 

  44. Sternberger, L.A., Hardy, P.H., Cuculis, J.J., Meyer, H.G.: The unlabeled antibody enzyme method of immunohistochemistry preparation and properties of soluble antigen-antibody complex (Horseradish Peroxidase-Antihorseradish Peroxidase) and its use in identification of spirochetes. J. Histochem. Cytochem. 18(5), 315–333 (1970)

    Google Scholar 

  45. Seligman, A.M., Karnovsky, M.J., Wasserkrug, H.L., Hanker, J.S.: Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (Dab). J. Cell Biol. 38(1), 1–14 (1968)

    Article  Google Scholar 

  46. Olsen, J.V., Ong, S.-E., Mann, M.: Trypsin cleaves exclusively c-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3(6), 608–614 (2004)

    Article  Google Scholar 

  47. Kurachi, K., Powers, J.C., Wilcox, P.E.: Kinetics of the reaction of chymotrypsin Aα with peptide chloromethyl ketones in relation to its subsite specificity. Biochemistry 12(4), 771–777 (1973)

    Article  Google Scholar 

  48. Smythe, C.: The reaction of iodoacetate and of iodoacetamide with various sulfhydryl groups, with urease, and with yeast preparations. J. Biol. Chem. 114(3), 601–612 (1936)

    Google Scholar 

  49. Umezawa, H., AOYAGI, T., Morishima, H., Matsuzaki, M., Hamada, M., Takeuchi, T.: Pepstatin, a New Pepsin Inhibitor Produced by Agtinomygetes. J. Antibiotics 23(5), 259–262 (1970)

    Google Scholar 

  50. Diermayr, P., Kroll, S., Klostermeyer, H.: Influence of Edta and metal ions on a metalloproteinase from pseudomonas fluorescens biotype I. Bio. Chem. Hoppe-Seyler 368(1), 57–62 (1987)

    Article  Google Scholar 

  51. Eyre, D.: Collagen of articular cartilage. Arthrit. Res. 4(1), 30–35 (2002)

    Article  Google Scholar 

  52. Hollander, A.P., et al.: Increased damage to type ii collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Investig. 93(4), 1722 (1994)

    Google Scholar 

  53. Roughley, P.J., Lee, E.R.: Cartilage proteoglycans: structure and potential functions. Microsc. Res. Tech. 28(5), 385–397 (1994)

    Article  Google Scholar 

  54. Müller, G., Hanschke, M.: Quantitative and qualitative analyses of proteoglycans in cartilage extracts by precipitation with 1, 9-Dimethylmethylene blue. Connect. Tissue Res. 33(4), 243–248 (1996)

    Article  Google Scholar 

  55. Stone, J.E., Akhtar, N., Botchway, S., Pennock, C.A.: Interaction of 1, 9-Dimethylmethylene blue with glycosaminoglycans. Ann. Clin. Biochem.: Int. J. Biochem. Med. 31(2), 147–152 (1994)

    Article  Google Scholar 

  56. Baeuerle, P.A., Huttner, W.B.: Chlorate–a potent inhibitor of protein sulfation in intact cells. Biochem. Biophys. Res. Commun. 141(2), 870–877 (1986)

    Article  Google Scholar 

  57. Berridge, M.V., Tan, A.S.: Characterization of the cellular reduction of 3-(4, 5-Dimethylthiazol-2-Yl)-2, 5-Diphenyltetrazolium Bromide (Mtt): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in mtt reduction. Arch. Biochem. Biophys. 303(2), 474–482 (1993)

    Article  Google Scholar 

  58. Candeias, L., MacFarlane, D.S., McWhinnie, S.W., Maidwell, N., Roeschlaub, C., Sammes, P.: The catalysed nadh reduction of resazurin to resorufin. J. Chem. Soc. Perkin Trans. 2(11), 2333–2334 (1998)

    Article  Google Scholar 

  59. Decker, T., Lohmann-Matthes, M.-L.: A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115(1), 61–69 (1988)

    Article  Google Scholar 

  60. Pittenger, M.F., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    Article  ADS  Google Scholar 

  61. Ramirez-Zacarias, J., Castro-Munozledo, F., Kuri-Harcuch, W.: Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with oil red O. Histochemistry 97(6), 493–497 (1992)

    Article  Google Scholar 

  62. Puchtler, H., Meloan, S.N., Terry, M.S.: On the history and mechanism of alizarin and Alizarin Red S stains for calcium. J. Histochem. Cytochem. 17(2), 110–124 (1969)

    Article  Google Scholar 

  63. Aulthouse, A.L., et al.: Expression of the human chondrocyte phenotype in vitro. In Vitro Cell. Dev. Biol. 25(7), 659–668 (1989)

    Article  Google Scholar 

  64. Grande, D., Halberstadt, C., Naughton, G., Schwartz, R., Manji, R.: Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 34(2), 211–220 (1997)

    Article  Google Scholar 

  65. Freed, L.E., et al.: Biodegradable polymer scaffolds for tissue engineering. Biotechnol. (N Y). 12(7), 689–693 (1994)

    Google Scholar 

  66. Zuberer, D.A.: Recovery and enumeration of viable bacteria. Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties (methodsofsoilan2), pp. 119–144 (1994)

    Google Scholar 

  67. McFarland, J.: The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. J. Am. Med. Assoc. 49(14), 1176–1178 (1907)

    Article  Google Scholar 

  68. Sutton, S.: Measurement of microbial cells by optical density. J. Valid. Technol. 17, 47–49 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Correia Carreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Correia Carreira, S. (2017). Materials and Methods. In: Rapid Cell Magnetisation Using Cationised Magnetoferritin. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60333-9_2

Download citation

Publish with us

Policies and ethics