Skip to main content

Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut Microbiota on Colonization Resistance Against Clostridium difficile

  • Conference paper
  • First Online:
Women in Mathematical Biology

Abstract

Clostridium difficile is the leading cause of infectious diarrhea in hospitals and one of the most common healthcare associated infections. Antibiotics alter the normal gut microbiota and facilitate the colonization of enteric pathogens such as C. difficile. Our objective is to elucidate the role of bile acids and other mechanisms in providing colonization resistance against C. difficile. We formulated and analyzed differential equation models for microbial interactions in the gut and bile acid dynamics, as well as a combined model including both mechanisms. Our analysis indicates that bile acids do not prevent C. difficile colonization, but they regulate the onset of C. difficile colonization and growth after antibiotic perturbation. These results have implications in the development of novel ways to inhibit C. difficile infection.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-60304-9_13

Fleming-Davies, Jabbari, Robertson and Noor Asih contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antharam, V.C., Li, E.C., Ishmael, A., Sharma, A., Mai, V., Rand, K.H., Wang, G.P.: Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51(9), 2884–2892 (2013)

    Article  Google Scholar 

  2. Antunes, L.C.M., Han, J., Ferreira, R.B.R., Lolić, P., Borchers, C.H., Finlay, B.B.: Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother. 55(4), 1494–1503 (2011)

    Article  Google Scholar 

  3. Artis, D.: Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8(6), 411–420 (2008)

    Article  Google Scholar 

  4. Ballyk, M., Smith, H.: A model of microbial growth in a plug flow reactor with wall attachment. Math. Biosci. 158(2), 95–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bassis, C.M., Theriot, C.M., Young, V.B.: Alteration of the murine gastrointestinal microbiota by tigecycline leads to increased susceptibility to Clostridium difficile infection. Antimicrob. Agents Chemother. 58(5), 2767–2774 (2014)

    Article  Google Scholar 

  6. Bouillaut, L., Self, W.T., Sonenshein, A.L.: Proline-dependent regulation of Clostridium difficile Stickland metabolism. J. Bacteriol. 195(4), 844–854 (2013)

    Article  Google Scholar 

  7. Buffie, C.G., Bucci, V., Stein, R.R., McKenney, P.T., Ling, L., Gobourne, A., No, D., Liu, H., Kinnebrew, M., Viale, A., et al.: Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517(7533), 205–208 (2015)

    Google Scholar 

  8. Coleman, M.E., Dreesen, D.W., Wiegert, R.G.: A simulation of microbial competition in the human colonic ecosystem. Appl. Environ. Microbiol. 62(10), 3632–3639 (1996)

    Google Scholar 

  9. Freter, R., Brickner, H., Fekete, J., Vickerman, M.M., Carey, K.E.: Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun. 39(2), 686–703 (1983)

    Google Scholar 

  10. Grima, D.T., Webb, G.F., D’Agata, E.M.C.: Mathematical model of the impact of a nonantibiotic treatment for Clostridium difficile on the endemic prevalence of vancomycin-resistant enterococci in a hospital setting. Comp. Math. Methods Med. 2012, 1–8 (2012)

    Article  MATH  Google Scholar 

  11. Hall, I., O’Toole, E.: Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am. J. Dis. Child 49(2), 390–402 (1935)

    Google Scholar 

  12. Jabbari, S., Cartman, S.T., King, J.R.: Mathematical modelling reveals properties of TcdC required for it to be a negative regulator of toxin production in Clostridium difficile. J. Math. Biol. 70, 773–804 (2015)

    Google Scholar 

  13. Karasawa, T., Ikoma, S., Yamakawa, K., Nakamura, S.: A defined growth medium for Clostridium difficile. Microbiology 141(2), 371–375 (1995)

    Google Scholar 

  14. Karlsson, S., Lindberg, A., Norin, E., Burman, L.G., Åkerlund, T.: Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile. Infect. Immun. 68(10), 5881–5888 (2000)

    Google Scholar 

  15. Kirschner Lab - Publications: Uncertainty and Sensitivity Analysis.http://malthus.micro.med.umich.edu/lab/usanalysis.html (2015)

  16. Koenigsknecht, M.J., Theriot, C.M., Bergin, I.L., Schumacher, C.A., Schloss, P.D., Young, V.B.: Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract. Infect. Immun. 83(3), 934–941 (2015)

    Article  Google Scholar 

  17. Lanzas, C., Dubberke, E.R., Lu, Z., Reske, K.A., Gröhn, Y.T.: Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect. Control Hosp. Epidemiol. 32(6), 553–561 (2011)

    Article  Google Scholar 

  18. Lawley, T.D., Walker, A.W.: Intestinal colonization resistance. Immunology 138(1), 1–11 (2013)

    Article  Google Scholar 

  19. Leatham, M.P., Banerjee, S., Autieri, S.M., Mercado-Lubo, R., Conway, T., Cohen, P.S.: Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157: H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77(7), 2876–2886 (2009)

    Google Scholar 

  20. Lessa, F.C., Mu, Y., Bamberg, W.M., Beldavs, Z.G., Dumyati, G.K., Dunn, J.R., Farley, M.M., Holzbauer, S.M., Meek, J.I., Phipps, E.C., et al.: Burden of Clostridium difficile infection in the United States. New Engl. J. Med. 372(9), 825–834 (2015)

    Article  Google Scholar 

  21. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  22. McKay, I.C., Speekenbrink, A.: Implications of Freter’s model of bacterial colonization. Infect. Immun. 44(1), 199–203 (1984)

    Google Scholar 

  23. Merrigan, M.M., Sambol, S.P., Johnson, S., Gerding, D.N.: New approach to the management of Clostridium difficile infection: colonisation with non-toxigenic C. difficile during daily ampicillin or ceftriaxone administration. Int. J. Antimicrob. Agents 33, S46–S50 (2009)

    Article  Google Scholar 

  24. Nagaro, K.J., Phillips, S.T., Cheknis, A.K., Sambol, S.P., Zukowski, W.E., Johnson, S., Gerding, D.N.: Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob. Agents Chemother. 57(11), 5266–5270 (2013)

    Google Scholar 

  25. Nakamura, S., Nakashio, S., Yamakawa, K., Tanabe, N., Nishida, S.: Carbohydrate fermentation by Clostridium difficile. Microbiol. Immunol. 26(2), 107–111, 1982.

    Google Scholar 

  26. O’Flaherty, S.J., Klaenhammer, T.R.: Functional and phenotypic characterization of a protein from Lactobacillus acidophilus involved in cell morphology, stress tolerance and adherence to intestinal cells. Microbiology 156(11), 3360–3367 (2010)

    Article  Google Scholar 

  27. Otete, E.H., Ahankari, A.S., Jones, H., Bolton, K.J., Jordan, C.W., Boswell, T.C., Wilcox, M.H., Ferguson, N.M., Beck, C.R., Puleston, R.L.: Parameters for the mathematical modelling of Clostridium difficile acquisition and transmission: a systematic review. PLoS One 8, e84224 (2013)

    Article  Google Scholar 

  28. Owens, R.C., Donskey, C.J., Gaynes, R.P., Loo, V.G., Muto, C.A.: Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 46(Supplement 1), S19–S31 (2008)

    Google Scholar 

  29. Pastor, J.: Mathematical Ecology of Populations and Ecosystems. Wiley-Blackwell, Singapore (2011)

    Google Scholar 

  30. Pépin, J., Saheb, N., Coulombe, M.-A., Alary, M.-E., Corriveau, M.-P., Authier, S., Leblanc, M., Rivard, G., Bettez, M., Primeau, V., et al.: Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile–associated diarrhea: a cohort study during an epidemic in Quebec. Clin. Infect. Dis. 41(9), 1254–1260 (2005)

    Article  Google Scholar 

  31. Rea, M.C., Sit, C.S., Clayton, E., O’Connor, P.M., Whittal, R.M., Zheng, J., Vederas, J.C., Ross, R.P., Hill, C.: Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl. Acad. Sci. U. S. A. 107(20): 9352–9357, 2010.

    Google Scholar 

  32. Reeves, A.E., Theriot, C.M., Bergin, I.L., Huffnagle, G.B., Schloss, P.D., Young, V.B.: The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes 2(3), 145–158 (2011)

    Article  Google Scholar 

  33. Ridlon, J.M., Kang, D.-J., Hylemon, P.B.: Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47(2), 241–259 (2006)

    Article  Google Scholar 

  34. Scaria, J., Chen, J.-W., Useh, N., He, H., McDonough, S.P., Mao, C., Sobral, B., Chang, Y.-F.: Comparative nutritional and chemical phenome of Clostridium difficile isolates determined using phenotype microarrays. Int. J. Infect. Dis. 27, 20–25 (2014)

    Article  Google Scholar 

  35. Schubert, A.M., Rogers, M.A.M., Ring, C., Mogle, J., Petrosino, J.P., Young, V.B., Aronoff, D.M., Schloss, P.D.: Microbiome data distinguish patients with Clostridium difficile infection and non- C. difficile-associated diarrhea from healthy controls. MBio 5(3), e01021–14 (2014)

    Google Scholar 

  36. Sorg, J.A., Sonenshein, A.L.: Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190(7), 2505–2512 (2008)

    Article  Google Scholar 

  37. Stein, R.R., Bucci, V., Toussaint, N.C., Buffie, C.G., Ratsch, G., Pamer, E.G., Sander, C., Xavier, J.B.: Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013)

    Article  Google Scholar 

  38. Steinway, S.N., Biggs, M.B., Loughran Jr, T.P., Papin, J.A., Albert, R.: Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput. Biol. 11(6), e1004338 (2015)

    Article  Google Scholar 

  39. Theriot, C.M., Young, V.B.: Interactions between the gastrointestinal microbiome and Clostridium difficile. Annu. Rev. Microbiol. 69, 445–461 (2015)

    Google Scholar 

  40. Theriot, C.M., Koenigsknecht, M.J., Carlson Jr, P.E., Hatton, G.E., Nelson, A.M., Li, B., Huffnagle, G.B., Li, J.Z., Young, V.B.: Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5 (2014)

    Google Scholar 

  41. Theriot, C.M., Bowman, A.A., Young, V.B.: Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1(1), e00045–15 (2016)

    Google Scholar 

  42. Tsilimigras, M.C.B., Fodor, A.A.: Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26(6), 330–335 (2016)

    Article  Google Scholar 

  43. Vollaard, E.J., Clasener, H.A.: Colonization resistance. Antimicrob. Agents Chemother. 38(3), 409 (1994)

    Article  Google Scholar 

  44. Weingarden, A.R., Chen, C., Bobr, A., Yao, D., Lu, Y., Nelson, V.M., Sadowsky, M.J., Khoruts, A.: Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am. J. Physiol. Gastrointest. Liver Physiol. 306(4), G310–G319 (2014)

    Article  Google Scholar 

  45. Wilson, K.H., Perini, F.: Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect. Immun. 56(10), 2610–2614 (1988)

    Google Scholar 

  46. Wilson, K.H., Kennedy, M.J., Fekety, F.R.: Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J. Clin. Microbiol. 15(3), 443–446 (1982)

    Google Scholar 

  47. Winston, J.A., Theriot, C.M.: Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe (2016). doi:10.1016/j.anaerobe.2016.05.003

    Google Scholar 

Download references

Acknowledgements

The work was partially funded through the Research Collaborative Workshop for Women in the Mathematical Biology at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxville. Jabbari thanks the BBSRC and MRC for their support in the form of the grant awards BB/M021386/1 and G1002093. The work of Lanzas and Lenhart was partially supported by the joint NSF/NIGMS Mathematical Biology Program through NIH award R01GM113239. Theriot is funded by Career Development Award in Metabolomics grant K01GM109236 and R35GM119438 from the NIH NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lenhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Fleming-Davies, A. et al. (2017). Mathematical Modeling of the Effects of Nutrient Competition and Bile Acid Metabolism by the Gut Microbiota on Colonization Resistance Against Clostridium difficile . In: Layton, A., Miller, L. (eds) Women in Mathematical Biology. Association for Women in Mathematics Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-60304-9_8

Download citation

Publish with us

Policies and ethics