Skip to main content

The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence

  • Conference paper
  • First Online:
Women in Mathematical Biology

Abstract

This proceedings paper is the first in a series of three papers developing mathematical models for the complex relationship between pain and the sleep–wake cycle. Here, we briefly review what is known about the relationship between pain and the sleep–wake cycle in humans and laboratory rodents in an effort to identify constraints for the models. While it is well accepted that sleep behavior is regulated by a daily (circadian) timekeeping system and homeostatic sleep drive, the joint modulation of these two primary biological processes on pain sensitivity has not been considered. Under experimental conditions, pain sensitivity varies across the 24 h day, with highest sensitivity occurring during the evening in humans. Pain sensitivity is also modulated by sleep behavior, with pain sensitivity increasing in response to the build-up of homeostatic sleep pressure following sleep deprivation or sleep disruption. To explore the interaction between these two biological processes using modeling, we first compare the magnitude of their effects across a variety of experimental pain studies in humans. To do this comparison, we normalize the results from experimental pain studies relative to the range of physiologically meaningful stimulation levels. Following this normalization, we find that the estimated impact of the daily rhythm and of sleep deprivation on experimental pain measurements is surprisingly consistent across different pain modalities. We also review evidence documenting the impact of circadian rhythms and sleep deprivation on the neural circuitry in the spinal cord underlying pain sensation. The characterization of sleep-dependent and circadian influences on pain sensitivity in this review paper is used to develop and constrain the mathematical models introduced in the two companion articles.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-60304-9_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aviram, J., Schochat, T., Pud, D.: Pain perception in healthy young men is modified by time of day and is modality dependent. Pain Med.16, 1137–1144 (2015)

    Article  Google Scholar 

  2. Bachmann, C.G., Nitsche, M.A., Pfingsten, M., Gersdorff, N., Harder, C., Baier, P.C., Antel, A., Treede, R.D., Paulus, W., Happe, S.: Diurnal time course of heat pain perception in healthy humans. Neurosci. Lett.489, 122–125 (2011)

    Article  Google Scholar 

  3. Basbaum, A.I., Bautista, D.M., Scherrer, G., Julius, D.: Cellular and molecular mechanisms of pain. Cell139(2), 267–284 (2009)

    Article  Google Scholar 

  4. Beginski, R.: Untersuchungen über die Schmerzreizschwel-lender Haut unter der Wirkung analgetischer Pharmaka. Med. Dissertation, Universität Kiel (1961)

    Google Scholar 

  5. Bochnik, H.J.: Mehrgleisig-simultane Untersuchungen spontaner Tagesschwankungen sensibler, motorischer und vegetativer Funktionen. Nervenarzt29, 307 (1958)

    Google Scholar 

  6. Bourdalle-Badie, C., Andre, M., Pourquier, P., Robert, S., Cambar, J., Erny, P.: Circadian rhythm of pain in man: study of measure of nociceptive flexion reflex. In: Reinberg, A., Smolensky, M., Labrecque, G. (eds.) Annual Review of Chronopharmacology. Biological Rhythms and Medications, vol. 7, pp. 249–252. Pergamon Press, New York (1990)

    Google Scholar 

  7. Bragin, E.O., Durinyan, R.A.: Study of the time course of changes in the daily rhythm of pain sensitivity in rats and in man. Patolgicescaja Ficiologija Eksperimentalnaja Terapija (Moscau)5, 22 (1983)

    Google Scholar 

  8. Bruguerolle, B., Labrecque, G.: Rhythmic pattern in pain and their chronotherapy. Adv. Drug Deliv. Rev.59(9–10), 883–895 (2007)

    Article  Google Scholar 

  9. Bullocks, J.M., Hsu, P.W., Izaddoost, S.A., Hollier, L.H., Stal, S.: Plastic Surgery Emergencies: Principles and Techniques. Thieme, Stuttgart (2008)

    Book  Google Scholar 

  10. Campbell, C.M., Bounds, S.C., Simango, M.B., Witmer, K.R., Campbell, J.N., Edwards, R.R., Haythornthwaite, J.A., Smith, M.T.: Self-reported sleep duration associated with distraction analgesia, hyperemia, and secondary hyperalgesia in the heat-capsaicin nociceptive model. Eur. J. Pain15(6), 561–567 (2011)

    Article  Google Scholar 

  11. Castellano, C., Puglisi-Allegra, P., Renzi, S., Oliverio, A.: Genetic differences in daily rhythms of pain sensitivity in mice. Pharmacol. Biochem. Behav.23, 91–92 (1985)

    Article  Google Scholar 

  12. Chapman, W.P., Jones, C.M.: Variations on cutaneous and visceral pain sensitivity in normal subjects. J. Clin. Invest.23(1), 81–91 (1944)

    Article  Google Scholar 

  13. Daan, S., Beersma, D.G., Borbely, A.A.: Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. Regul. Integr. Comp. Physiol.246(2), R161–R183 (1984)

    Google Scholar 

  14. Davis, G.C., Buchsbaum, M.S., Bunney, W.E.: Naloxone decreases diurnal variation in pain sensitivity and somatosensory evoked potentials. Life Sci.23(14), 1449–1459 (1978)

    Article  Google Scholar 

  15. Drewes, A.M., Rossel, P., Arendt-Nielsen, L., Nielsen, K.D., Hansen, L.M., Birket-Smith, L., Stengaard-Pedersen, K.: Sleepiness does not modulate experimental joint pain in healthy volunteers. Scand. J. Rheumatol.26, 399–400 (1997)

    Article  Google Scholar 

  16. Dubin, A.E., Patapoutian, A.: Nociceptors: the sensors of the pain pathway. J. Clin. Invest.120(11), 3760–3772 (2010)

    Article  Google Scholar 

  17. Finan, P.H., Goodin, B.R., Smith, M.T.: The association of sleep and pain: an update and a path forward. J. Pain14(12), 1539–1552 (2013)

    Article  Google Scholar 

  18. Frederickson, R.C., Burgis, V., Edwards, J.D.: Hyperalgesia induced by naloxone follows diurnal rhythm in responsivity to painful stimuli. Science198(4318), 756–758 (1977)

    Article  Google Scholar 

  19. Frees, H.J.: Rhythmik in der Schmerzempfindlichkeit der Zähne. Med. Dissertation, Universität Rostock (1937)

    Google Scholar 

  20. Gilron, I., Ghasemlou, N.: Chronobiology of chronic pain: focus on diurnal rhythmicity of neuropathic pain. Curr. Opin. Support. Palliat. Care8(4), 429–436 (2014)

    Article  Google Scholar 

  21. Göbel, H., Cordes, P.: Circadian variation of pain sensitivity in pericranial musculature. Headache30(7), 418–422 (1990)

    Article  Google Scholar 

  22. Godt, H., Thiele, E.: Über die Abkängigkeit der Zahnschmer-zempfindlichkeit vom individuellen Tagesablauf. Stoma21, 184–190 (1968)

    Google Scholar 

  23. Grabfield, G.P., Martin, E.G.: Variations in the sensory threshold for faradic stimulation in normal subjects. The diurnal rhythm. Am. J. Physiol.31, 300–308 (1912)

    Google Scholar 

  24. Haack, M., Lee, E., Cohen, D.A., Mullington, J.M.: Activation of the prostaglandin system in response to sleep loss in healthy humans: potential mediator of increased spontaneous pain. Pain145(1–2), 136–141 (2009)

    Article  Google Scholar 

  25. Hardy, D.J., Wolff, H.G., Goodell, H.: Studies on pain. A new method for measuring pain threshold. J. Clin. Invest.19, 349 (1940)

    Google Scholar 

  26. Hummel, T., Kraetsch, H.G., Lotsch, J., Hepper, M., Liefhold, J., Kobal, G.: Analgesic effects of dihydrocodeine and tramadol when administered either in the morning or evening. Chronobiol. Int.12(1): 62–72 (1995)

    Article  Google Scholar 

  27. Ibironke, G.F., Ajonijebu, C.O.: Sleep deprivation-induced hyperalgesia in rodents: some neurochemical mechanisms. Neurophysiology46(5), 411–414 (2014)

    Article  Google Scholar 

  28. Jacoby, W.G.: Loess:: a nonparametric, graphical tool for depicting relationships between variables. Elect. Stud.19(4), 577–613 (2000)

    Google Scholar 

  29. Jores, A., Frees, J.: Die Tagesschwankungen der Schmerz empfindung. DMW25, 962–963 (1937)

    Article  Google Scholar 

  30. Kavaliers, M., Hirst, M.: Daily rhythms of analgesia in mice: effects of age and photoperiod. Brain Res.279(1–2), 387–393 (1983)

    Article  Google Scholar 

  31. Kobal, G., Hummel, T., Kraetsch, H.G., Lötsch, J.: Circadian analgesic effect of dihydromorphione and tramadol. In: 5th International Conference on Biological Rhythms and Medications, Amelia Island (FL), Abstract XIII-5 (1992)

    Google Scholar 

  32. Koch, H.J., Raschka, C.: Diurnal variation of pain perception in young volunteers using the tourniquet pain model. Chronobiol. Int.21(1), 171–173 (2004)

    Article  Google Scholar 

  33. Kundermann, B., Spernal, J., Huber, M.T., Krieg, J.-C., Lautenbacher, S.: Sleep deprivation affects thermal pain thresholds but not somatosensory thresholds in healthy volunteers. Psychosom. Med.66(6), 932–937 (2004)

    Article  Google Scholar 

  34. Kusunore, N., Koyanagi, S., Hamamura, K., Matsunaga, N., Yoshida, M., Uchida, T., Tsuda, M., Inoue, K., Ohdo, S.: Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain. Mol. Pain6(83), 1–8 (2010)

    Google Scholar 

  35. Lautenbacher, S., Kundermann, B., Krieg, J.-C.: Sleep deprivation and pain perception. Sleep Med. Rev.10(5), 357–369 (2006)

    Article  Google Scholar 

  36. Le Bars, D., Gozariu, M., Cadden, S.W.: Animal models of nociception. Pharmacol. Rev.53(4), 597–652 (2001)

    Google Scholar 

  37. Macht, D.J., Herman, N.B., Levy, C.S.: A quantitative study of the analgesia produced by opium alkaloids, individually and in combination with each other, in normal man. J. Pharm. Exp. Ther.8(1), 1–37 (1916)

    Google Scholar 

  38. Martin, E.G., Bigelow, G.H., Grabfield, G.B.: Variations in the sensory threshold for faradic stimulation in normal human subjects. II. The nocturnal rhythm. Am. J. Physiol.33, 415–422 (1914)

    Google Scholar 

  39. Millan, M.J.: Descending control of pain. Prog. Neurobiol.66(6), 355–474 (2002)

    Article  Google Scholar 

  40. Moayedi, M., Davis, K.D.: Theories of pain: from specificity to gate control. J. Neurophysiol.109(1), 5–12 (2013)

    Article  Google Scholar 

  41. Morawetz, R.F., Parth, P., Pöppel, E.: Influence of the pain measurement technique on the diurnal variation of pain perception. In: Bromm B (ed) Pain Measurement in Man, pp 409–416. Elsevier, Amsterdam (1984)

    Google Scholar 

  42. Nascimento, D.C., Andersen, M.L., Hipólide, D.C., Nobrega, J.N., Tufik, S.: Pain hypersensitivity induced by paradoxical sleep deprivation is not due to altered binding to brain-opioid receptors. Behav. Brain Res.178(2), 216–220 (2007)

    Article  Google Scholar 

  43. Oliverio, A., Castellano, C., Puglisi-Allegra, S.: Opiate analgesia: evidence for circadian rhythms in mice. Brain Res.249(2), 265–270 (1982)

    Article  Google Scholar 

  44. Onen, S.H., Alloui, A., Gross, A., Eschallier, A., Dubray, C.: The effects of total sleep deprivation, selective sleep interruption and sleep recovery on pain tolerance thresholds in healthy subjects. J. Sleep Res.10(1), 35–42 (2001)

    Article  Google Scholar 

  45. Oster, H., Yasui, A., van der Horst, G.T., Albrecht, U.: Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice. Genes Dev.16(20), 2633–2638 (2002)

    Article  Google Scholar 

  46. Pöllmann, L.: Über den Tagesrhythmus der Schmerzemp-findlichkeit der Zähne. Wehrmedizinische Monatschrift18, 142–144 (1974)

    Google Scholar 

  47. Pöllmann, L.: Der Zahnschmerz. Chronobiologie, Beurteilung und Behandlung. München Wien, Hanser (1980)

    Google Scholar 

  48. Pöllmann, L.: Duality of pain demonstrated by the circadian variation in tooth sensitivity. In: Erhard, H., Kabat, H.F. (eds.) Chronobiology 1982–1983, chap. 39, pp. 225–228. Karger, Basel (1984)

    Google Scholar 

  49. Procacci, P.: Änderungen der Schmerzschwelle für Haut-stiche während des Tages- und Monatsrhythmus. In: Janzen R, Keidel WD, Herz A, Streichele C (eds.) Schmerz. Grund-lagen, Pharmakologie, Therapie, pp. 47–50. Stuttgart, Thieme (1972)

    Google Scholar 

  50. Procacci, P., Della Corte, M., Zoppi, M., Maresca, M.: Rhythmic changes of the cutaneous pain threshold in man: a general review. Chronobiologia1(1), 77–96 (1974)

    Google Scholar 

  51. PuglisiAllegra, S., Castellano, C., Oliverio, A.: Circadian variations in stress-induced analgesia. Brain Res.252(2), 373–376 (1982)

    Article  Google Scholar 

  52. Ritter, O.: Untersuchungen über die Bestimmung der Schmerzempfindlichkeit beim Menschen mit Hilfe einer faradischen Reizmethode. Med. Dissertation, Universität Kiel (1958)

    Google Scholar 

  53. Roehrs, T., Hyde, M., Blaisdell, B., Greenwald, M., Roth, T.: Sleep loss and REM sleep loss are hyperalgesic. Sleep29(2), 145–151 (2006)

    Article  Google Scholar 

  54. Rogers, E.J., Viikin, B.: Diurnal variations in sensory and pain thresholds correlated with mood states. J. Clin. Psych.39, 431–432 (1978)

    Google Scholar 

  55. Roseboom, P.H., Namboodiri, M.A., Zimonjic, D.B., Popescu, N.C., Rodriguez, I.R., Gastel, J.A., Klein, D.C.: Natural melatonin ‘knockdown’ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res. Mol. Brain Res.63(1), 189–197 (1998)

    Article  Google Scholar 

  56. Sandrini, G., Alfonsi, E., Bono, G., Facchinetti, F., Montalbetti, L., Nappi, G.: Circadian variations of human flexion reflex. Pain25(3), 403–410 (1986)

    Article  Google Scholar 

  57. Schestatsky, P., Dall-Agnol, L., Gheller, L., Stefani, L.C., Sanches, P.R.S., de Souza, I.C., Torres, I.L., Caumo, W.: Pain-autonomic interaction after work-induced sleep restriction. Eur. J. Neurol.20(4), 638–646 (2013)

    Article  Google Scholar 

  58. Schröder: Der Inductionsstrom als Diagnosticum in der zahnärztlichen Praxis. Korrespondenzblatt für Zahnärzte34, 68–78 (1905)

    Google Scholar 

  59. Schuh-Hofer, S., Wodarski, R., Pfau, D.B., Caspani, O., Magerl, W., Kennedy, J.D., Treede, R.-D.: One night of total sleep deprivation promotes a state of generalized hyperalgesia: a surrogate pain model to study the relationship of insomnia and pain. Pain154(9), 1613–1621 (2013)

    Article  Google Scholar 

  60. Schuhmacher, G.A., Goodell, H., Hardy, J.D., Wolff, H.G.: Uniformity of pain threshold in man. Science92, 110–112 (1940)

    Article  Google Scholar 

  61. Smith, M.T., Edwards, R.R., McCann, U.D., Haythornthwaite, J.A.: The effects of sleep deprivation on pain inhibition and spontaneous pain in women. Sleep30(4), 494–505 (2007)

    Article  Google Scholar 

  62. Spoelstra, K., Albrecht, U., van der Horst, G.T.J., Brauer, V., Daan, S.: Phase responses to light pulses in mice lacking functional per or cry genes. J. Biol. Rhythms19(6), 518–529 (2004)

    Article  Google Scholar 

  63. Stacher, G., Bauer, P., Schneider, C., Winklehner, S., Schmierer, G.: Effects of combination of oral naproxen sodium and codeine on experimentally induced pain. J. Clin. Pharm.21(6), 485 (1982)

    Article  Google Scholar 

  64. Starek, H.: Untersuchungen der Schmerzschwelle des Menschen mit dem Algesimeter für strahlende Wärme. Med. Dissertation, Universität Zürich (1957)

    Google Scholar 

  65. Stoll, A.M., Greene, L.C.: Relationship between pain and tissue damage due to thermal radiation. J. Appl. Physiol.14(3), 373–382 (1959)

    Google Scholar 

  66. Strempel, H.: Circadian cycles of epicritic and protopathic pain threshold. J. Interdis. Cycle Res.8, 276–280 (1977)

    Article  Google Scholar 

  67. Strian, F., Lautenbacher, S., Galfe, G., Hölzl, R.: Diurnal variations in pain perception and thermal sensitivity. Pain36, 125–131 (1989)

    Article  Google Scholar 

  68. Takada, T., Yamashita, A., Date, A., Yanase, M., Suhara, Y., Hamada, A., Sakai, H., Ikegami, D., Iseki, M., Inada, E., Narita, M.: Changes in the circadian rhythm of mRNA expression forμ-opioid receptors in the periaqueductal gray under a neuropathic pain-like state. Synapse67(5), 216–223 (2013)

    Article  Google Scholar 

  69. Tiede, W., Magerl, W., Baumgartner, U., Durrer, B., Ehlert, U., Treede, R.D.: Sleep restriction attenuates amplitudes and attentional modulation of pain-related evoked potentials, but augments pain ratings in healthy volunteers. Pain148(1), 36–42 (2010)

    Article  Google Scholar 

  70. Tobler, I., Borbély, A.A.: Sleep eeg in the rat as a function of prior waking. Electroencephalogr. Clin. Neurophysiol.64(1), 74–76 (1986)

    Article  Google Scholar 

  71. Ukponmwan, O.E., Rupreht, J., Dzoljic, M.R.: REM sleep deprivation decreases the antinociceptive property of enkephalinase-inhibition, morphine and cold-water-swim. Gen. Pharmacol.15(3), 255–258 (1984)

    Article  Google Scholar 

  72. von Dincklage, F., Hackbarth, M., Mager, R., Rehberg, B., Baars, J.H.: Monitoring of the responsiveness to noxious stimuli during anaesthesia with propofol and remifentanil by using RIII reflex threshold and bispectral index. Br. J. Anaesth.104(2), 201–208 (2010)

    Article  Google Scholar 

  73. Wei, H., Gong, N., Huang, J.L., Fan, H., Ma, A.N., Li, X.Y., Wang, Y.X., Pertovaara, A.: Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacol. Biochem. Behav.111, 30–36 (2013)

    Article  Google Scholar 

  74. Wei, H., Hao, B., Huang, J.-L., Ma, A.-N., Li, X.-Y., Wang, Y.-X., Pertovaara, A.: Intrathecal administration of a gap junction decoupler, an inhibitor of Na+ K+ 2Cl cotransporter 1, or a GABAA receptor agonist attenuates mechanical pain hypersensitivity induced by REM sleep deprivation in the rat. Pharmacol. Biochem. Behav.97(2), 377–383 (2010)

    Article  Google Scholar 

  75. Wei, H., Zhao, W., Wang, Y.X., Pertovaara, A.: Pain-related behavior following REM sleep deprivation in the rat: influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Res.1148, 105–112 (2007)

    Article  Google Scholar 

  76. Wesche, D.L., Frederickson, R.C.A.: Diurnal differences in opioid peptide levels correlated with nociceptive sensitivity. Life Sci.24(20), 1861–1867 (1979)

    Article  Google Scholar 

  77. Burn exposure chart.www.antiscald.com

  78. Zhang, J., Li, H., Teng, H., Zhang, T., Luo, Y., Zhao, M., Li, Y.Q., Sun, Z.S.: Regulation of peripheral clock to oscillation of substance P contributes to circadian inflammatory pain. Anesthesiology117(1), 149–160 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted as a part of A Research Collaboration Workshop for Women in Mathematical Biology at the National Institute for Mathematical and Biological Synthesis, sponsored by the National Science Foundation through NSF Award DBI-1300426, with additional support from The University of Tennessee, Knoxville. This work was additionally partially supported by the following sources: NSF Award DMS-1412119 (VB), NSF RTG grant DMS-1344962 (JC), and the Pritzker Neuropsychiatric Disorders Research Consortium (MH). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Hagenauer, M.H., Crodelle, J.A., Piltz, S.H., Toporikova, N., Ferguson, P., Booth, V. (2017). The Modulation of Pain by Circadian and Sleep-Dependent Processes: A Review of the Experimental Evidence. In: Layton, A., Miller, L. (eds) Women in Mathematical Biology. Association for Women in Mathematics Series, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-60304-9_1

Download citation

Publish with us

Policies and ethics