Skip to main content

The Master Equation in Migration Theory

  • Chapter
  • First Online:
Modelling with the Master Equation
  • 1312 Accesses

Abstract

This chapter investigates the dynamic development of spatial patterns based on human activities. The topic is a fundamental issue of regional sciences and spatial economics. Migration processes in all their theoretical and empirical aspects are of overwhelming importance to all spheres of society. Since migration and especially the demographic composition of the stream of migrants and their social affiliation are among others factors of population growth they influence directly fundamental economic and social indicators of our society. After a reconsideration of the famous Gravity model, the Weidlich-Haag migration model is derived. It is shown how the rank-size distribution of settlements can be understood as a dynamic self-organization process.

As an important application of the WH-model the interregional migration in Germany on the level of 402 districts is investigated. The algorithm for the estimation of all model parameters is explained in detail. A multiple regression was also performed for the spatial preferences on the district level. The regression results well confirm that variables related to the housing market, the labour market, the innovation power of the region under consideration as well as accessibility measures are important explanatory variables for the regional preferences in Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details of the estimation: Number of observations: 6162, degrees of freedom: 6150, R 2 = 0.43

References

  • Aggarwal CC (2011) Social network data analysis. Springer, New York

    Book  MATH  Google Scholar 

  • Allen P, Sanglier M (1979) A dynamic model of growth in a central place system. Geogr Anal 11:256–272

    Article  Google Scholar 

  • Andersson AE, Ferraro G (1982) Accessibility and density distributions in metropolitan areas: theory and empirical studies. Pap Reg Sci Assoc 52:141–158

    Article  Google Scholar 

  • Auerbach F (1913) Das Gesetz der Bevoelkerungskonzentration. Petermanns Mitteilungen 59:1

    Google Scholar 

  • Bak P, Paczuski M (1995) Complexity, contingency, and criticality. Proc Natl Acad Sci 92:6689–6696

    Article  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) An explanation of the 1/f noise. Phys Rev Lett 59:381

    Article  Google Scholar 

  • Barenblatt GI (2003) Scaling. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Batten DF, Casti J, Thord R (eds) (1995) Networks in action. Springer, Berlin

    Google Scholar 

  • Batty M (1970) Models and projections of the space economy: a subregional study in Northwest England. Town Plan Rev 41:121–148

    Article  Google Scholar 

  • Batty M, Longley P (1994) Fractal cities. Academic, London

    MATH  Google Scholar 

  • Batty M, Mackie S (1972) The calibration of gravity, entropy and related models of spatial interaction. Environ Plan 4:205–233

    Article  Google Scholar 

  • Berry BJK, Garrison WL (1958a) The functional bases of the central place hierarchy. Econ Geogr 34:145–154

    Article  Google Scholar 

  • Berry BJK, Garrison WL (1958b) Alternate explanations of urban rank-size relationships. Ann Assoc Am Geogr 1:83–91

    Article  Google Scholar 

  • Bertuglia CS, Clark GP, Wilson AG (1994) Modelling the city, performance, policy and planning. Routledge, London

    Book  Google Scholar 

  • Birg H, Filip D, Hilge K (1983) Verflechtungsanalys der Bevölkerungsmobilität zwischen den Bundesländern von 1950–1980. IBS-Materialien, 8, Universität Bielefeld

    Google Scholar 

  • Carey HC (1858) Principles of social aciences 3. Lippincott, Philadelphia

    Google Scholar 

  • Cobb CW, Douglas PH (1928) A theory of production. Am Econ Rev 18(1):139–165

    Google Scholar 

  • Cornelius I (1996) Bevoelkerungsbilanz und natuerliche Bevoelkerungsentwicklung. In: Statistisches Landesamt Baden-Wuerttemberg (Hrsg) Baden-Wuerttemberg in Wort und Zahl, Statistische Monatshefte, 44/9, Stuttgart

    Google Scholar 

  • Couclelis H (2017) Climbing on a milestone for a better view: Goodchild’s “Geographical Information Science” paper as vantage point and ground for reflection. Int J Geogr Inf Sci 26:2291–2300

    Article  Google Scholar 

  • Courgeau D (1985) Migrants and migrations. Population selected papers, INED, Paris

    Google Scholar 

  • Courgeau D (1995) Migration theories and behavioural models. Int J Popul Geogr 1:19–27

    Article  MATH  Google Scholar 

  • Curry L (1964) The random spatial economy. Ann Assoc Am Geogr 7:138–146

    Article  Google Scholar 

  • Fischer MM, Nijkamp P, Papageorgiou YY (1990) Spatial choices and processes. North-Holland, Amsterdam

    Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Frankhauser P (1998) The fractal approach. A new tool fort he spatial analysis of urban agglomerations. Population 10:205–240

    Google Scholar 

  • Frankhauser P, Guerin-Pace F (1993) Measuring the hierarchical organization of an urban system (á paraître)

    Google Scholar 

  • Gibrart R (1931) Les inégalités économiques. Sirey, Paris

    Google Scholar 

  • Greene WH (2003) Econometric analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Grimmeau JP (1994) Le Moodéle gravitatire et le facteur d’échelle. Applications aux migrations intérieures de la Belgique 1989-1991. Espace Popul Soc 1:131–141

    Article  Google Scholar 

  • Guerin-Pace F (1990) Dynamique lente et dynamique rapide dans le development d’un système de villes. Paper presented at Colloque de l’AIDELF, Rabat

    Google Scholar 

  • Guerin-Pace F (1993) Deux siécles de croissance urbaine. Anthropos, Paris

    Google Scholar 

  • Haag G (1989) Dynamic decision theory: Application to urban and regional topics. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Haag G (1993) The rank-size distribution of settlements as a dynamic multi-fractal phenomenon. Chaos Solitons Fractals 4:519–534

    Article  MATH  Google Scholar 

  • Haag G, Gruetzmann K (2001) Transport and urban development. In: Clark G, Madden M (eds) Regional science in business. Springer, Berlin

    Google Scholar 

  • Haag G, Max H (1995) Rank-size distribution of settlement systems: a stable attractor in urban growth. J Reg Sci Assoc 74:243–258

    Article  Google Scholar 

  • Haag G, Weidlich W (1983) An evaluable theory for a class of migration problems. Collaborative paper, CP-83-58, IIASA, Laxenburg

    Google Scholar 

  • Haag G, Weidlich W (1984a) A stochastic theory of interregional migration. Geogr Anal 16:331–357

    Article  Google Scholar 

  • Haag G, Weidlich W (1984b) Model construction in dynamic spatial theory. Proceedings of the Task Force Meeting in Dynamic Analysis of Spatial Development. IIASA, Laxenburg

    Google Scholar 

  • Haag G, Weidlich W (1986) A dynamic migration theory and its evaluation for concrete systems. Reg Sci Urban Econ 16:57–80

    Article  Google Scholar 

  • Haag G, Munz M, Sanders L, Saint-Julien T, Pumain D (1991) Interurban migration and the dynamics of a system of cities: the stochastic framework with an application to the French urban system. Environ Plan A 24:181–198

    Article  Google Scholar 

  • Haran EGP, Vining DR (1973) On the implications of a stationary urban population distribution for the size distribution of cities. Geogr Anal 4:194–200

    Google Scholar 

  • Haynes KE, Fotheringham AS (1984) Gravity and spatial interaction models. Sage, Beverly Hills

    Google Scholar 

  • Hotelling H (1978) A mathematical theory of migration. Republished in Environ Plan A 10

    Google Scholar 

  • Huriot JM, Thisse J (1984) Distance in spatial analysis. Institute de Mathematiques Economques. LATEC LA, CNRS 342, Université de Dijon

    Google Scholar 

  • Isard W (1954) Location theory and trade theory: short-run analysis. Q J Econ 68:305–322

    Article  Google Scholar 

  • Katz L (1953) A new status index derived from sociometric index. Psychometrica 18:39–43

    Article  MATH  Google Scholar 

  • Krugman P (1993) First nature, second nature and metropolitan location. J Reg Sci 33:129–144

    Article  Google Scholar 

  • Krugman P (1994) Fluctuations, instability and agglomeration. NBER working paper 4616

    Google Scholar 

  • La Barra D (1990) Integrated land use and transport modelling. Cambridge University Press, Cambridge

    Google Scholar 

  • Lee ES (1966) A theory of migration. Demography 3:47–57

    Article  Google Scholar 

  • Leonardi G, Casti J (1986) Agglomeration tendencies in the distribution of populations. Reg Sci Urban Econ 16:43–56

    Article  Google Scholar 

  • LeSage JP, Pace RK (2014) The biggest myth in spatial econometrics. Econometrics 2:217–249

    Article  Google Scholar 

  • MacGill SM (1979) Convergence and related properties for a modified biproportional matrix problem. Environ Plan A 11:499–506

    Article  Google Scholar 

  • Mandelbrot BB (1991) Die fraktale Geometrie der Natur. Birkhäuser, Berlin

    MATH  Google Scholar 

  • Melguizo C (2017) An analysis of Okun’s law for the Spanish provinces. Rev Reg Res 37:59–90

    Article  Google Scholar 

  • Mills E (1972) Studies in the structure of the urban economy. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Nijkamp P, Reggiani A (1992) Interaction, evolution and chaos in space. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nijkamp P, Reggiani A (1998) Entropy, spatial interaction modelling and discrete choice analysis. Eur J Oper Res 36(1):186–196

    MATH  Google Scholar 

  • Papageorgiou YY (1980) On sudden urban growth. Environ Plan A 12:1035–1050

    Article  Google Scholar 

  • Papageorgiou YY, Smith TR (1983) Agglomeration as local instability of spatial uniform steady states. Econometrica 51:242–252

    Article  MATH  Google Scholar 

  • Piontek M, Wyrwich M (2017) The emergence of entrepreneurial ideas at universities in times of demographic change: evidence from Germany. Rev Reg Res 37:1–37

    Article  Google Scholar 

  • Portnov BA (2011) Does Zipf’s law hold for primate cities? Some evidence from a discriminant analysis of world countries. Jahrbuch für Regionalwissenschaften 31:113–129

    Article  Google Scholar 

  • Poulain M (1981) Contribution á l’analyse spatiale d’une matrice de migrations internes. Cabay, Bruyland, Brussels

    Google Scholar 

  • Pumain D (1982) La dynamique des Villes. Economica, Paris

    Google Scholar 

  • Pumain D (1990) City size dynamics in urban systems. In: Proceedings of the conference on dynamic modelling and human systems, Cambridge

    Google Scholar 

  • Pumain D (ed) (1991) Spatial analysis and population dynamics. John Libbey Eurotext, Paris

    Google Scholar 

  • Pumain D (1993) Geography, physics and synergetics. In: Haag G, Mueller U, Troitzsch RG (eds) Economic evolution and demographic change, Lecture notes in economics and mathematical systems, vol 395. Springer, Heidelberg

    Google Scholar 

  • Pumain D (ed) (2006) Hierarchy in natural and social sciences. Springer, Dordrecht

    Google Scholar 

  • Pumain D, Haag G (1991) Urban and regional dynamics-towards an integrated approach. Environ Plan A 23:1301–1313

    Article  Google Scholar 

  • Pumain D, Sanders L, Saint-Julien T (1989) Villes et auto-organisation. Economica, Paris

    Google Scholar 

  • Puu T (1983) A simplified model of spatio-temporal population dynamics. Umea Economic Studies, 139

    Google Scholar 

  • Quandt RE (1964) Statistical discrimination among alternate hypothesis and some economic regulations. J Reg Sci 2:1–23

    Article  Google Scholar 

  • Rabino GA, Occelli S (1999) Understanding spatial structure from network data: theoretical considerations and applications. Cybergeo, 29

    Google Scholar 

  • Ravenstein E (1885) The laws of migration. J R Stat Soc 48:167–235

    Google Scholar 

  • Ravenstein E (1889) The laws of migration, second paper. J R Stat Soc 52:241–305

    Article  Google Scholar 

  • Reggiani A, Bucci P, Russo G (2011) Accessibility and impedance forms: empirical applications to the German commuting networks. Int Reg Sci Rev 34(2):230–252

    Article  Google Scholar 

  • Reilly WJ (1931) The law of retail migration. Pilsbury, New-York

    Google Scholar 

  • Reynaud J (1841) Villes encyclopédie nouvelle, tome VIII, Gosselin, 670–687

    Google Scholar 

  • Robic MC (1982) Cent an savant Christaller: une thérie des lieux centraux. L’Espace Géogr 11:5–12

    Article  Google Scholar 

  • Robson B (1973) Urban growth: an approach. Methuen, Paris

    Google Scholar 

  • Roehner B, Wiese KE (1982) A dynamic generalization of Zipf’s rank-size rule. Environ Plan 14:1449–1467

    Article  Google Scholar 

  • Rosser JB (2011) Complex evolutionary dynamics in urban-regional and ecologic-economic systems: from catastrophe to chaos and beyond. Springer, New York

    Book  Google Scholar 

  • Sanders L (1992) Systéme de Villes et Synergétique. Anthropos, Paris

    Google Scholar 

  • Sardadvar S, Rocha-Akis S (2016) Interregional migration within the European Union in the aftermath of the eastern emlargements. Rev Reg Res 36:51–59

    Article  Google Scholar 

  • Schuermann C, Spiekermann K, Wegener M (1997) Accessibility indicators. Universitaet Dortmund, Berichte aus dem Institut fuer Raumplanung (IRPUD) 39, Dortmund

    Google Scholar 

  • Sen A (1982) Modeling spatial flows. Unpublished manuscript. School of Urban Planning and Policy, University of Illinois at Chicago, IL

    Google Scholar 

  • Somermeijer WH (1966) Specificatie van economische relaties. Reprint 126, Econometrisch Instituut, Erasmus University Rotterdam

    Google Scholar 

  • Steindl J (1968) Size distributions in economics. In: Sills DL, Merton RK (eds) International encyclopedia of the social science. Macmillan, New York

    Google Scholar 

  • Stewart JQ (1947) Suggested principles of social physics. Science 106:179–180

    Article  Google Scholar 

  • Stewart JQ (1948) Demographic gravitation: evidence and application. Sociometry 11:31–58

    Article  Google Scholar 

  • Straubhaar T (1988) On the economics of international labor migration, Beiträge zur Wirtschaftspolitik. Paul Haupt, Bern

    Google Scholar 

  • Weber AF (1899) The growth of cities in the nineteenth century: a study in statistics. Macmillan, New York

    Google Scholar 

  • Weidlich W, Haag G (1983) Concepts and models of a quantitative sociology: the dynamics of interacting populations, Springer-series synergetics, vol 14. Springer, Berlin

    MATH  Google Scholar 

  • Weidlich W, Haag G (1987) A dynamic phase transition model for spatial agglomeration processes. J Reg Sci 27:529–569

    Article  Google Scholar 

  • Weidlich W, Haag G (eds) (1988) Interregional migration. Springer, Berlin

    MATH  Google Scholar 

  • Wheaton WC (1974) A comparative static analysis of urban spatial structure. J Econ Theory 9:223–237

    Article  Google Scholar 

  • White R (1978) Simulation of central place dynamics and the rank size distribution. Geogr Anal 10:201–208

    Article  Google Scholar 

  • Wilson AG (1970) Entropy in urban and regional modelling. Pion Books, London

    Google Scholar 

  • Wilson AG (1981a) Geography and the environment. Wiley, New York

    Google Scholar 

  • Wilson AG (1981b) The evolution of spatiale structure. In: Bennett RJ (ed) European progress in spatial analysis. Pion Books, London

    Google Scholar 

  • Wilson AG (1981c) Catastrophe theory and bifurcations: applications to urban and regional systems. Croom Helm, London

    MATH  Google Scholar 

  • Zipf GK (1949) Human behaviour and the principle of least effort. Addison-Wesley, Reading, MA

    Google Scholar 

  • Zipser T, Mlek M, Zipser W (2011) Zipf’s law in hierarchically ordered open systems. Jahrbuch für Regionalwissenschaften 31:93–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Haag, G. (2017). The Master Equation in Migration Theory. In: Modelling with the Master Equation. Springer, Cham. https://doi.org/10.1007/978-3-319-60300-1_8

Download citation

Publish with us

Policies and ethics