Skip to main content

Maternal Characteristics Predisposing to Fetal Growth Restriction

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

Fetal growth restriction affects up to 10% of live-born infants representing a major cause of neonatal morbidity and mortality worldwide, being a significant risk factor for future adult health. A reduction of nutrient supply and oxygenation is the final common basis in fetal growth restriction. However, mechanisms involved can be various, and depending both by external (maternal diet and environment – such as pollution, living at high altitude, maternal smoke-) and internal (maternal/placental/fetal altered metabolism or molecular mechanisms) causes.

Impaired placental function is mainly the final step leading to decreased nutrient and oxygen transfer to the fetus. Indeed, the placenta has an active role in fetal nutrition. Maternal metabolism and state of health can represent a risk factor affecting placental function. Impaired maternal nutrition and nutrient uptake can alter nutrient supply to the fetus across the placenta. At the same time, maternal characteristics such as body mass index and lifestyle, can influence both systemic and local oxidative stress and inflammation, potentially conditioning fetal growth. In fetal growth restriction, maternal diet and environmental factors are very important causes of epigenetic modifications such as altered DNA methylation and microRNAs expression, leading to impaired placental function, with sexual dimorphism in the placental response to maternal environment.

On the other side, fetal uptake and metabolism can affect fetal growth and energy production.

A cross-talk between mother-placenta-fetus compartments, further complicates the identification of the possible origin of fetal growth deficiency. Any insult deriving from the environment or from one of these three compartments, affects their cross-talk, possibly leading to fetal growth restriction.

In this context, it is of utmost importance to produce guidelines for preconception as well as for pregnancy monitoring, in order to reduce the potential negative effects of exposures that have an impact on fetal growth and on future epigenetic marks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Assisted reproductive technology

FGR:

Fetal growth restriction

miRNAs:

micro-RNAs

SGA:

Small for gestational age

References

  1. Bergmann RL, Bergmann KE, Dudenhausen JW. Undernutrition and growth restriction in pregnancy. Nestle Nutr Workshop Ser Pediatr Program. 2008;61:103–21.

    Article  PubMed  Google Scholar 

  2. Cetin I, Sparks JW. Determinants of intrauterine growth. In: Hay Jr WW, Thureen PJ, editors. Neonatal nutrition and metabolism. ed 2 ed. Cambridge: Cambridge University Press; 2006. p. 23–31.

    Google Scholar 

  3. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction- part 1. J Matern Fetal Neonatal Med. 2016;9:1–39.

    CAS  Google Scholar 

  4. American College of Obstetricians and Gynecologists. ACOG practice bulletin no. 134: fetal growth restriction. Obstet Gynecol. 2013;121(5):1122–33.

    Article  Google Scholar 

  5. Tudehope D, Vento M, Bhutta Z, Pachi P. Nutritional requirements and feeding recommendations for small for gestational age infants. J Pediatr. 2013;162:S81.

    Article  CAS  PubMed  Google Scholar 

  6. Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update. 2013;19:640–55.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang X, Platt RW, Cnattingius S, et al. The use of customized versus population-based birthweight standards in predicting perinatal mortality. Br J Obstet Gynaecol. 2007;114:474–7.

    Article  CAS  Google Scholar 

  8. Cetin I, Boito S, Radaelli T. Evaluation of fetal growth and fetal well-being. Semin Ultrasound CT MR. 2008;29(2):136–46.

    Article  PubMed  Google Scholar 

  9. Padoan A, Rigano S, Ferrazzi E, et al. Differences in fat and lean mass proportions in normal and growth-restricted fetuses. Am J Obstet Gynecol. 2004;191:1459–64.

    Article  PubMed  Google Scholar 

  10. Gardosi J, Figueras F, Clausson B, Francis A. The customised growth potential: an international research tool to study the epidemiology of fetal growth. Paediatr Perinat Epidemiol. 2011;25:2.

    Article  PubMed  Google Scholar 

  11. Alfirevic Z, Stampalija T, Gyte GM. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2013;12(11):CD007529.

    Google Scholar 

  12. Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, O’Donoghue K, Hunter A, Morrison JJ, Burke G, Dicker P, Tully EC, Malone FD. Predictable progressive Doppler deterioration in IUGR: does it really exist? Am J Obstet Gynecol. 2013;209(6):539.e1–7.

    Article  Google Scholar 

  13. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303(6):527–34.

    Article  CAS  PubMed  Google Scholar 

  14. Van Uitert EM, Exalto N, Burton GJ, Willemsen SP, Koning AH, Eilers PH, Laven JS, Steegers EA, Steegers-Theunissen RP. Human embryonic growth trajectories and associations with fetal growth and birthweight. Hum Reprod. 2013;28(7):1753–61.

    Article  PubMed  Google Scholar 

  15. Cetin I, Mando C, Calabrese S. Maternal predictors of intrauterine growth restriction. Curr Opin Clin Nutr Metab Care. 2013;16(3):310e319.

    Article  Google Scholar 

  16. Maloney KF, Heller D, Baergen RN. Types of maternal hypertensive disease and their association with pathologic lesions and clinical factors. Fetal Pediatr Pathol. 2012;31(5):319–23.

    Article  PubMed  Google Scholar 

  17. Almasi O, Pariente G, Kessous R, Sergienko R, Sheiner E. Association between delivery of small-for-gestational-age neonate and long-term maternal chronic kidney disease. J Matern Fetal Neonatal Med. 2015;23:1–4.

    Article  Google Scholar 

  18. Julian CG, Yang IV, Browne VA, Vargas E, Rodriguez C, Pedersen BS, Moore LG, Schwartz DA. Inhibition of peroxisome proliferator-activated receptor γ: a potential link between chronic maternal hypoxia and impaired fetal growth. FASEB J. 2014;28(3):1268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tobi EW, Slieker RC, Stein AD, Suchiman HE, Slagboom PE, van Zwet EW, Heijmans BT, Lumey LH. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol. 2015;44(4):1211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mandò C, Calabrese S, Mazzocco MI, Novielli C, Anelli GM, Antonazzo P, Cetin I. Sex specific adaptations in placental biometry of overweight and obese women. Placenta. 2016;38:1–7.

    Article  PubMed  Google Scholar 

  21. Pantham P, Aye IL, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36(7):709e715.

    Article  Google Scholar 

  22. Sen S, Rifas-Shiman SL, Shivappa N, Wirth MD, Hébert JR, Gold DR, Gillman MW, Oken E. Dietary inflammatory potential during pregnancy is associated with lower fetal growth and breastfeeding failure: results from project viva. J Nutr. 2016;146:728–36. pii: jn225581. [Epub ahead of print].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blatt K, Moore E, Chen A, Van Hook J, DeFranco EA. Association of reported trimester-specific smoking cessation with fetal growth restriction. Obstet Gynecol. 2015;125(6):1452–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mandò C, De Palma C, Stampalija T, Anelli GM, Figus M, Novielli C, Parisi F, Clementi E, Ferrazzi E, Cetin I. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am J Physiol Endocrinol Metab. 2014;306(4):E404–13.

    Article  PubMed  Google Scholar 

  25. Maisonneuve E, Delvin E, Edgard A, Morin L, Dubé J, Boucoiran I, Moutquin JM, Fouron JC, Klam S, Levy E, Leduc L. Oxidative conditions prevail in severe IUGR with vascular disease and Doppler anomalies. J Matern Fetal Neonatal Med. 2015;28(12):1471–5.

    Article  PubMed  Google Scholar 

  26. Chen F, Wang T, Feng C, Lin G, Zhu Y, Wu G, Johnson G, Wang J. Proteome differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses. PLoS One. 2015;10(11):e0142396.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wiebe HW, Boulé NG, Chari R, Davenport MH. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet Gynecol. 2015;125(5):1185–94.

    Article  PubMed  Google Scholar 

  28. Madianos PN, Lieff S, Murtha AP, et al. Maternal periodontitis and prematurity. Part II: maternal infection and fetal exposure. Ann Periodontol. 2001;6:175–82.

    Article  CAS  PubMed  Google Scholar 

  29. Colleoni F, Lattuada D, Garretto A, Massari M, Mandò C, Somigliana E, Cetin I. Maternal blood mitochondrial DNA content during normal and intrauterine growth restricted (IUGR) pregnancy. Am J Obstet Gynecol. 2010;203(4):365–e6.

    Article  PubMed  Google Scholar 

  30. Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod. 2011;84:572–80.

    Article  CAS  PubMed  Google Scholar 

  31. Mayeur S, Lancel S, Theys N, Lukaszewski MA, Duban-Deweer S, Bastide B, Hachani J, Cecchelli R, Breton C, Gabory A, Storme L, Reusens B, Junien C, Vieau D, Lesage J. Maternal calorie restriction modulates placental mitochondrial biogenesis and bioenergetic efficiency: putative involvement in fetoplacental growth defects in rats. Am J Physiol Endocrinol Metab. 2013;304:E14–22.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider D, Hernández C, Farías M, Uauy R, Krause BJ, Casanello P. Oxidative stress as common trait of endothelial dysfunction in chorionic arteries from fetuses with IUGR and LGA. Placenta. 2015;36(5):552–8.

    Article  CAS  PubMed  Google Scholar 

  33. Visentin S, Lapolla A, Londero AP, Cosma C, Dalfrà M, Camerin M, Faggian D, Plebani M, Cosmi E. Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed Res Int. 2014;2014:401595.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Elmhiri G, Mahmood DF, Niquet-Leridon C, Jacolot P, Firmin S, Guigand L, Tessier FJ, Larcher T, Abdennebi-Najar L. Formula-derived advanced glycation end products are involved in the development of long-term inflammation and oxidative stress in kidney of IUGR piglets. Mol Nutr Food Res. 2015;59(5):939–47.

    Article  CAS  PubMed  Google Scholar 

  35. Riddle ES, Campbell MS, Lang BY, Bierer R, Wang Y, Bagley HN, Joss-Moore LA. Intrauterine growth restriction increases TNF α and activates the unfolded protein response in male rat pups. J Obes. 2014;2014:829862.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Clifton VL. Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010;31(Suppl):S33eS39.

    Google Scholar 

  37. de Souza AP, Pedroso AP, Watanabe RL, Dornellas AP, Boldarine VT, Laure HJ, do Nascimento CM, Oyama LM, Rosa JC, Ribeiro EB. Gender-specific effects of intrauterine growth restriction on the adipose tissue of adult rats: a proteomic approach. Proteome Sci. 2015;13:32.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tarrade A, Panchenko P, Junien C, Gabory A. Placental contribution to nutritional programming of health and diseases: epigenetics and sexual dimorphism. J Exp Biol. 2015;218(Pt 1):50–8. Review.

    Article  PubMed  Google Scholar 

  39. Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics. 2015;7(1):96.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Casas-Agustench P, Iglesias-Gutiérrez E, Dávalos A. Mother’s nutritional miRNA legacy: nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacol Res. 2015;100:322–34.

    Article  CAS  PubMed  Google Scholar 

  41. Hillman SL, Finer S, Smart MC, Mathews C, Lowe R, Rakyan VK, Hitman GA, Williams DJ. Novel DNA methylation profiles associated with key gene regulation and transcription pathways in blood and placenta of growth-restricted neonates. Epigenetics. 2015;10(1):50–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Monk D. Genomic imprinting in the human placenta. Am J Obstet Gynecol. 2015;213(4 Suppl):S152–62.

    Article  PubMed  Google Scholar 

  43. Koukoura O, Sifakis S, Soufla G, et al. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int J Mol Med. 2011;28:481–7.

    CAS  PubMed  Google Scholar 

  44. Lambertini L, Lee TL, Chan WY, et al. Differential methylation of imprinted & genes in growth-restricted placentas. Reprod Sci. 2011;18:1111–7.

    Article  CAS  PubMed  Google Scholar 

  45. Xiao X, Zhao Y, Jin R, Chen J, Wang X, Baccarelli A, Zhang Y. Fetal growth restriction and methylation of growth-related genes in the placenta. Epigenomics. 2016;8(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  46. Wilson SL, Blair JD, Hogg K, Langlois S, von Dadelszen P, Robinson WP. Placental DNA methylation at term reflects maternal serum levels of INHA and FN1, but not PAPPA, early in pregnancy. BMC Med Genet. 2015;16(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sohi G, Marchand K, Revesz A, et al. Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol. 2011;25:785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ping J, Wang JF, Liu L, Yan YE, Liu F, Lei YY, Wang H. Prenatal caffeine ingestion induces aberrant DNA methylation and histone acetylation of steroidogenic factor 1 and inhibits fetal adrenal steroidogenesis. Toxicology. 2014;3(321):53–61.

    Article  Google Scholar 

  49. Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213(4 Suppl):S163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hromadnikova I, Kotlabova K, Doucha J, et al. Absolute and relative quanti-& fication of placenta-specific micrornas in maternal circulation with placental insufficiency-related complications. J Mol Diagn. 2012;14:160–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Cetin MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cetin, I., Mandò, C., Parisi, F. (2017). Maternal Characteristics Predisposing to Fetal Growth Restriction. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics