Skip to main content

Maternal Fitness and Infant Birth Weight

  • Chapter
  • First Online:
  • 1558 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Numerous studies have evaluated the effects of maternal physical activity on infant birth weight, an important pregnancy outcome reflecting the quality of the prenatal environment and associated with future cardiometabolic and obesity risk. Although maternal physical activity interventions slightly reduce infant birth weight, the optimal physical activity dose to improve the child long term health and its effect on infant’s body composition remain unknown. Recent evidence have also confirmed previous results suggesting that various physical activity types, volumes, and intensities have different impacts on fetal growth. Indeed, while moderate levels of physical activity could increase infant birth weight, high levels of physical activity during pregnancy appear to decrease birth weight and neonatal adiposity in low-risk pregnant women. Although most studies suggest no increase in the risk of small birth weight with maternal exercise, more studies are needed to improve our understanding of the long term consequences of these fetal adaptations on child growth and health, especially in women presenting a high-risk pregnancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

CI:

Confidence interval

DXA:

Dual energy x-ray absorptiometry

Hb:

Hemoglobin

HDL:

High density lipoprotein

OR:

Odds ratio

References

  1. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14.

    Article  PubMed  Google Scholar 

  2. Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. Cochrane Database Syst Rev. 2006;19(3):CD000180.

    Google Scholar 

  3. Wiebe HW, Boule NG, Chari R, Davenport MH. The effect of supervised prenatal exercise on fetal growth: a meta-analysis. Obstet Gynecol. 2015;125(5):1185–94.

    Article  PubMed  Google Scholar 

  4. Sanabria-Martinez G, Garcia-Hermoso A, Poyatos-Leon R, Alvarez-Bueno C, Sanchez-Lopez M, Martinez-Vizcaino V. Effectiveness of physical activity interventions on preventing gestational diabetes mellitus and excessive maternal weight gain: a meta-analysis. BJOG. 2015;122(9):1167–74.

    Article  CAS  PubMed  Google Scholar 

  5. Aune D, Saugstad OD, Henriksen T, Tonstad S. Physical activity and the risk of preeclampsia: a systematic review and meta-analysis. Epidemiology. 2014;25(3):331–43.

    Article  PubMed  Google Scholar 

  6. Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A. Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr. 2003;77(3):726–30.

    CAS  PubMed  Google Scholar 

  7. Inskip HM, Godfrey KM, Martin HJ, Simmonds SJ, Cooper C, Sayer AA. Size at birth and its relation to muscle strength in young adult women. J Intern Med. 2007;262(3):368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ridgway CL, Ong KK, Tammelin T, Sharp SJ, Ekelund U, Jarvelin MR. Birth size, infant weight gain, and motor development influence adult physical performance. Med Sci Sports Exerc. 2009;41(6):1212–21.

    Article  PubMed  Google Scholar 

  9. Stuart A, Amer-Wahlin I, Persson J, Kallen K. Long-term cardiovascular risk in relation to birth weight and exposure to maternal diabetes mellitus. Int J Cardiol. 2013;168(3):2653–7.

    Article  PubMed  Google Scholar 

  10. Chiavaroli V, Giannini C, D’Adamo E, de Giorgis T, Chiarelli F, Mohn A. Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics. 2009;124(2):695–702.

    Article  PubMed  Google Scholar 

  11. Clapp JF. Influence of endurance exercise and diet on human placental development and fetal growth. Placenta. 2006;27(6–7):527–34.

    Article  CAS  PubMed  Google Scholar 

  12. Royal College of Obstetricians and Gynaecologists. Exercise in pregnancy. RCOG Statement No. 4 – January 2006 [On line]; [cited August 10th, 2016]; Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/statements/statement-no-4.pdf. n.d.

  13. Davies GA, Wolfe LA, Mottola MF, MacKinnon C. Joint SOGC/CSEP clinical practice guideline: exercise in pregnancy and the postpartum period. Can J Appl Physiol. 2003;28(3):330–41.

    Article  PubMed  Google Scholar 

  14. ACOG Committee Opinion No. 650. Physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol. 2015;126(6):e135–42.

    Article  Google Scholar 

  15. PARmed-X. PARmed-X for pregancy, physical activity readiness medical examination [On line]. 2002 [cited August 10th, 2016]; Available from: http://www.csep.ca/cmfiles/publications/parq/parmed-xpreg.pdf.

  16. ACSM. Benefits and risks associated with physical activity. In: Thompson WR, editor. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 2–17.

    Google Scholar 

  17. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S446–51. discussion S52–3.

    Article  CAS  PubMed  Google Scholar 

  18. Bisson M, Almeras N, Plaisance J, Rheaume C, Bujold E, Tremblay A, et al. Maternal fitness at the onset of the second trimester of pregnancy: correlates and relationship with infant birth weight. Pediatr Obes. 2013;8(6):464–74.

    Article  CAS  PubMed  Google Scholar 

  19. Evenson KR, Wen F. Prevalence and correlates of objectively measured physical activity and sedentary behavior among US pregnant women. Prev Med. 2011;53(1–2):39–43.

    Article  PubMed  Google Scholar 

  20. Pomerance JJ, Gluck L, Lynch VA. Physical fitness in pregnancy: its effect on pregnancy outcome. Am J Obstet Gynecol. 1974;119(7):867–76.

    Article  CAS  PubMed  Google Scholar 

  21. Erkkola R. The physical work capacity of the expectant mother and its effect on pregnancy, labor and the newborn. Int J Gynaecol Obstet. 1976;14(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  22. Erkkola R, Makela M. Heart volume and physical fitness of parturients. Ann Clin Res. 1976;8(1):15–21.

    CAS  PubMed  Google Scholar 

  23. Laukkanen JA, Laaksonen D, Lakka TA, Savonen K, Rauramaa R, Makikallio T, et al. Determinants of cardiorespiratory fitness in men aged 42 to 60 years with and without cardiovascular disease. Am J Cardiol. 2009;103(11):1598–604.

    Article  PubMed  Google Scholar 

  24. Bisson M, Lavoie-Guenette J, Tremblay A, Marc I. Physical activity volumes during pregnancy: a systematic review and meta-analysis of observational studies assessing the association with infant’s birth weight. AJP Rep. 2016;6(2):e170–97.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hopkins SA, Baldi JC, Cutfield WS, McCowan L, Hofman PL. Exercise training in pregnancy reduces offspring size without changes in maternal insulin sensitivity. J Clin Endocrinol Metab. 2010;95(5):2080–8.

    Article  CAS  PubMed  Google Scholar 

  26. Clapp JF 3rd, Kim H, Burciu B, Lopez B. Beginning regular exercise in early pregnancy: effect on fetoplacental growth. Am J Obstet Gynecol. 2000;183(6):1484–8.

    Article  PubMed  Google Scholar 

  27. Bisson M, Almeras N, Dufresne SS, Robitaille J, Rheaume C, Bujold E, et al. A 12-week exercise program for pregnant women with obesity to improve physical activity levels: an open randomised preliminary study. PLoS One. 2015;10(9):e0137742.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Barakat R, Lucia A, Ruiz JR. Resistance exercise training during pregnancy and newborn’s birth size: a randomised controlled trial. Int J Obes. 2009;33(9):1048–57.

    Article  CAS  Google Scholar 

  29. Barakat R, Pelaez M, Cordero Y, Perales M, Lopez C, Coteron J, et al. Exercise during pregnancy protects against hypertension and macrosomia: randomized clinical trial. Am J Obstet Gynecol. 2016;214(5):649 e1–8.

    Article  Google Scholar 

  30. Badon SE, Wander PL, Qiu C, Miller RS, Williams MA, Enquobahrie DA. Maternal leisure time physical activity and infant birth size. Epidemiology. 2016;27(1):74–81.

    Article  PubMed  Google Scholar 

  31. McCullough LE, Mendez MA, Miller EE, Murtha AP, Murphy SK, Hoyo C. Associations between prenatal physical activity, birth weight, and DNA methylation at genomically imprinted domains in a multiethnic newborn cohort. Epigenetics. 2015;10(7):597–606.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fleten C, Stigum H, Magnus P, Nystad W. Exercise during pregnancy, maternal prepregnancy body mass index, and birth weight. Obstet Gynecol. 2010;115(2 Pt 1):331–7.

    Article  PubMed  Google Scholar 

  33. Harrod CS, Chasan-Taber L, Reynolds RM, Fingerlin TE, Glueck DH, Brinton JT, et al. Physical activity in pregnancy and neonatal body composition: the healthy start study. Obstet Gynecol. 2014;124(2 Pt 1):257–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Clapp JF 3rd, Kim H, Burciu B, Schmidt S, Petry K, Lopez B. Continuing regular exercise during pregnancy: effect of exercise volume on fetoplacental growth. Am J Obstet Gynecol. 2002;186(1):142–7.

    Article  PubMed  Google Scholar 

  35. Renault KM, Norgaard K, Nilas L, Carlsen EM, Cortes D, Pryds O, et al. The treatment of obese pregnant women (TOP) study: a randomized controlled trial of the effect of physical activity intervention assessed by pedometer with or without dietary intervention in obese pregnant women. Am J Obstet Gynecol. 2014;210(2):134 e1–9.

    Article  Google Scholar 

  36. Vinter CA, Jensen DM, Ovesen P, Beck-Nielsen H, Jorgensen JS. The LiP (lifestyle in pregnancy) study a randomized controlled trial of lifestyle intervention in 360 obese pregnant women. Diabetes Care. 2011;34(12):2502–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Catalano P, deMouzon SH. Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes. 2015;39(4):642–9.

    Article  CAS  Google Scholar 

  38. Clapp JF 3rd, Dickstein S. Endurance exercise and pregnancy outcome. Med Sci Sports Exerc. 1984;16(6):556–62.

    Article  PubMed  Google Scholar 

  39. Bell RJ, Palma SM, Lumley JM. The effect of vigorous exercise during pregnancy on birth-weight. Aust N Z J Obstet Gynaecol. 1995;35(1):46–51.

    Article  CAS  PubMed  Google Scholar 

  40. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189(6):1698–704.

    Article  PubMed  Google Scholar 

  41. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006;195(4):1100–3.

    Article  PubMed  Google Scholar 

  42. Clapp JF 3rd, Capeless EL. Neonatal morphometrics after endurance exercise during pregnancy. Am J Obstet Gynecol. 1990;163(6 Pt 1):1805–11.

    Article  PubMed  Google Scholar 

  43. Bisson M, Tremblay F, St-Onge O, Robitaille J, Pronovost E, Simonyan D, et al. Influence of maternal physical activity on infant’s body composition. Pediatr Obes. 2016; doi: 10.1111/ijpo.12174.

  44. Harvey NC, Javaid MK, Arden NK, Poole JR, Crozier SR, Robinson SM, et al. Maternal predictors of neonatal bone size and geometry: the Southampton Women’s Survey. J Dev Orig Health Dis. 2010;1(1):35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, et al. Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res. 2001;16(9):1694–703.

    Article  CAS  PubMed  Google Scholar 

  46. Clapp JF 3rd. Morphometric and neurodevelopmental outcome at age five years of the offspring of women who continued to exercise regularly throughout pregnancy. J Pediatr. 1996;129(6):856–63.

    Article  PubMed  Google Scholar 

  47. Clapp JF 3rd, Simonian S, Lopez B, Appleby-Wineberg S, Harcar-Sevcik R. The one-year morphometric and neurodevelopmental outcome of the offspring of women who continued to exercise regularly throughout pregnancy. Am J Obstet Gynecol. 1998;178(3):594–9.

    Article  PubMed  Google Scholar 

  48. Tanvig M, Vinter CA, Jorgensen JS, Wehberg S, Ovesen PG, Lamont RF, et al. Anthropometrics and body composition by dual energy x-ray in children of obese women: a follow-up of a randomized controlled trial (the lifestyle in pregnancy and offspring [LiPO] study). PLoS One. 2014;9(2):e89590.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tanvig M, Vinter CA, Jorgensen JS, Wehberg S, Ovesen PG, Beck-Nielsen H, et al. Effects of lifestyle intervention in pregnancy and anthropometrics at birth on offspring metabolic profile at 2.8 years: results from the lifestyle in pregnancy and offspring (LiPO) study. J Clin Endocrinol Metab. 2015;100(1):175–83.

    Article  CAS  PubMed  Google Scholar 

  50. Schou Andersen C, Juhl M, Gamborg M, Sorensen TI, Nohr EA. Maternal recreational exercise during pregnancy in relation to children’s BMI at 7 years of age. Int J Pediatr. 2012;2012:920583.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Erkkola RU, Pirhonen JP, Kivijarvi AK. Flow velocity waveforms in uterine and umbilical arteries during submaximal bicycle exercise in normal pregnancy. Obstet Gynecol. 1992;79(4):611–5.

    CAS  PubMed  Google Scholar 

  52. Szymanski LM, Satin AJ. Strenuous exercise during pregnancy: is there a limit? Am J Obstet Gynecol. 2012;207(3):179 e1–6.

    Article  Google Scholar 

  53. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993–1017.

    Article  CAS  PubMed  Google Scholar 

  54. van Poppel MN, Oostdam N, Eekhoff ME, Wouters MG, van Mechelen W, Catalano PM. Longitudinal relationship of physical activity with insulin sensitivity in overweight and obese pregnant women. J Clin Endocrinol Metab. 2013;98(7):2929–35.

    Article  PubMed  Google Scholar 

  55. Clapp JF 3rd. Effect of dietary carbohydrate on the glucose and insulin response to mixed caloric intake and exercise in both nonpregnant and pregnant women. Diabetes Care. 1998;21(Suppl 2):B107–12.

    PubMed  Google Scholar 

  56. Sommer C, Sletner L, Morkrid K, Jenum AK, Birkeland KI. Effects of early pregnancy BMI, mid-gestational weight gain, glucose and lipid levels in pregnancy on offspring’s birth weight and subcutaneous fat: a population-based cohort study. BMC Pregnancy Childbirth. 2015;15:84.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ruchat SM, Davenport MH, Giroux I, Hillier M, Batada A, Sopper MM, et al. Effect of exercise intensity and duration on capillary glucose responses in pregnant women at low and high risk for gestational diabetes. Diabetes Metab Res Rev. 2012;28(8):669–78.

    Article  CAS  PubMed  Google Scholar 

  58. Soultanakis HN, Artal R, Wiswell RA. Prolonged exercise in pregnancy: glucose homeostasis, ventilatory and cardiovascular responses. Semin Perinatol. 1996;20(4):315–27.

    Article  CAS  PubMed  Google Scholar 

  59. Day PE, Ntani G, Crozier SR, Mahon PA, Inskip HM, Cooper C, et al. Maternal factors are associated with the expression of placental genes involved in amino acid metabolism and transport. PLoS One. 2015;10(12):e0143653.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brett KE, Ferraro ZM, Holcik M, Adamo KB. Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta. Placenta. 2015;36(2):204–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Marc MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bisson, M., Marc, I. (2017). Maternal Fitness and Infant Birth Weight. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics