Skip to main content

Maternal Taurine Supplementation Prevents Misprogramming

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Part of the book series: Nutrition and Health ((NH))

Abstract

Taurine (Tau) is a sulfur containing amino acid that has multiple cellular and molecular functions mainly associated with the conjugation of bile acids, cellular osmoregulation, energy storage, absorption of intestinal fat, glucose metabolism, anti-oxidation, neurotransmission and cytoprotective effects during cell development and survival. It is synthesized from ingested methionine and cysteine in the liver and white adipose tissue (WAT).

Maternal Tau deficiency either by dietary insufficiency (protein restriction) or by maternal diabetes affects fetal development altering the endocrine pancreas of the offspring. These changes during fetal and neonatal life, increases the risks of developing diabetes, obesity and hypertension. Taurine supplementation to deficient diets or to diabetic mothers during different windows of fetal and neonatal development restores β-cell mass, insulin sensitivity and glucose intolerance in adulthood.

Extrapolating results from animal studies to humans gave controversial results as Tau administration did not fully restored glucose intolerance or reduced obesity. More studies are needed to understand the putative benefits of Tau administration to adult patients with diabetes and/or obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α:

Alpha cells

ATP:

Adenosine triphosphate

Akt:

Protein kinase B

β:

Beta cells

BMI:

Body mass index

[Ca2+] i:

Intracellular Ca 2+ concentration

CDO:

Cysteine dioxygenase

CHOL:

Cholesterol

C57 Bl/6J:

Black inbred laboratory mice

C-peptide:

Connecting peptide (A and B insulin chain)

C:

Control

CYP7A1:

Cholesterol-7-hydrolase

δ:

Delta cells

DNA:

Deoxyribonucleic acid

DM:

Diabetes mellitus

Flk-1:

Receptor for vascular endothelial growth factor

HbA1C:

Glycosylated hemoglobin

HF:

High Fat

HOMA:

Homeostatic model of assessment index

HPLC:

High-performance liquid chromatography

IUGR:

Intrauterine growth restriction

IGF-II:

Insulin-like growth factor-II

IR:

Insulin receptor

KKAy mice:

Genetically obese diabetic mice

LP:

Low protein

LP1:

Low protein diet during gestation and lactation

LP2:

Low protein diet all life

LDL:

Low-density lipoprotein

NOD:

Non-obese diabetic

OLEFT:

Otsuka Long Evans Tokushima Fatty rats

Pdx-1:

Pancreatic and duodenal homeobox 1

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

pp.:

Pancreatic polypeptide

PPAR-α:

Peroxisome proliferator-activated receptor alpha

PPAR-ϒ:

Peroxisome proliferator-activated receptor gamma

RNA:

Ribonucleic acid

RIA:

Radioimmunoassay

SST:

Somatostatin

STB:

Syncytiotrophoblast

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TAU:

Taurine

TauT:

Taurine transporters

TG:

Triglycerides

UCP:

Uncoupling protein 2

VLDL:

Very low density lipoprotein

WAT:

White adipose tissue

References

  1. Demarcay H. Ueber die natur der galle. AmPharm. 1838;27:270–91.

    Google Scholar 

  2. Stipanuk MH, Bagley PJ, Hou YC, Bella DL, Banks MF, Hirschberger L. Hepatic regulationof cysteine utilization for taurine synthesis. Taurine in health and disease. In: Huxtable RJ, Michak D, editors. Advances in experimental medicine and biology. New York: Plenum Press; 1994.

    Google Scholar 

  3. Schaffer S, Takahashi K, Azuma J. Role of osmoregulation in the actions of taurine. Amino Acids. 2000;19:527–46.

    Article  CAS  PubMed  Google Scholar 

  4. Jong CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids. 2012;42:2223–32.

    Article  CAS  PubMed  Google Scholar 

  5. Lambert IH. Regulation of the cellular content of the organic Osmolyte taurine in mammalian cells. Neurochem Res. 2004;29(1):27–63.

    Article  CAS  PubMed  Google Scholar 

  6. Yamori Y, Taguchi T, Mori H, Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci. 2010;17(Suppl 1(Suppl 1)):S21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shinwell ED, Gorodischer R. Totally vegetarian diets and infant nutrition. Pediatrics. 1982;70:582–6.

    CAS  PubMed  Google Scholar 

  8. Geggel H, Ament M. Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med. 1985;312(May 1982):142–6.

    Article  CAS  PubMed  Google Scholar 

  9. Sturman JA. Taurine in development. J Nutr. 1988;118(10):1169–76. doi:10.1016/0024-3205(77)90420-9.

    CAS  PubMed  Google Scholar 

  10. Gaull G, Sturman J, Räihä N. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res. 1972;6(6):538–47.

    Article  CAS  PubMed  Google Scholar 

  11. Philipps AF, Holzman IR, Teng C, Battaglia FC. Tissue concentrations of free amino acids in term human placentas. Am J Obstet Gynecol. 1978;131(8):881–7.

    Article  CAS  PubMed  Google Scholar 

  12. Norberg S, Powell TL, Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res. 1998;44(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  13. Economides DL, Nicolaides KH, Gahl WA, Bernardini I, Evans MI. Plasma amino acids in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;161(5):1219–27.

    Article  CAS  PubMed  Google Scholar 

  14. Sturman JA, Chesney RW. Taurine in pediatric nutrition. Pediatr Clin N Am. 1995;42(4):879–97.

    Article  CAS  Google Scholar 

  15. Rassin D, Gaull G, Järvenpää A, Räihä N. Feeding the low-birth-weight infant:II. Effects of taurine and cholesterol supplementation on amino acids and cholesterol. Pediatrics. 1983;71(2):179–86.

    CAS  PubMed  Google Scholar 

  16. Vom Dahl S, Mönnighoff I, Häussinger D. Decrease of plasma taurine in Gaucher disease and its sustained correction during enzyme replacement therapy. Amino Acids. 2000;19(3–4):585–92.

    Article  CAS  PubMed  Google Scholar 

  17. Franconi F, Bennardini F, Mattana A, et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr. 1995;61(5):1115–9.

    CAS  PubMed  Google Scholar 

  18. Ito T, Oishi S, Takai M, et al. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J Biomed Sci. 2010;17(Suppl 1(Suppl 1)):S20.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fernandes A, King LC, Guz Y, Stein R, Wright CV, Teitelman G. Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology. 1997;138(4):1750–62.

    Article  CAS  PubMed  Google Scholar 

  20. Scharfmann R. Control of early development of the pancreas in rodents and humans: implications of signals from the mesenchyme. Diabetologia. 2000;43:1083–92.

    Article  CAS  PubMed  Google Scholar 

  21. Piper K, Brickwood S, Turnpenny LW, et al. Beta cell differentiation during early human pancreas development. J Endocrinol. 2004;181(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  22. Kaung HL. Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat. Dev Dyn. 1994;200(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  23. Petrik J, Arany E, McDonald TJ, Hill D. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with the reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology. 1998;139:2994–3004.

    Article  CAS  PubMed  Google Scholar 

  24. Lammert E, Cleaver OMD. Role of endothelial cells in early pancreas and liver development. Mech Dev. 2003;120:59–64.

    Article  CAS  PubMed  Google Scholar 

  25. Brissova M, Shostak A, Shiota M, et al. Pancreatic islet production of vascular endothelial growth factor-A is essential for islet vascularization, revascularization, and function. Diabetes. 2006;55(11):2974–85.

    Article  CAS  PubMed  Google Scholar 

  26. Hales CN, Barker DJP. The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull. 2001;60(1):5–20.

    Article  CAS  PubMed  Google Scholar 

  27. Chamson-Reig A, Thyssen SM, Arany E, Hill DJ. Altered pancreatic morphology in the offspring of pregnant rats given reduced dietary protein is time and gender specific. J Endocrinol. 2006;191(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  28. Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35(7):730–43.

    Article  CAS  PubMed  Google Scholar 

  29. Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ Hill, D. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology. 1999;140(10):4861–73.

    Google Scholar 

  30. Reusens BDS, Snoek A, Bennis-Taleb N, Remacle C, Hoett J. Long-term consequences of diabetes and its complications may have a fetal origin: experimental and epidemiological evidence. In: Cowett RM, editor. Diabetes, Nestle: Workshop Series, vol. 25. New York: Raven Press; 1995. p. 187–8.

    Google Scholar 

  31. Chamson-Reig A, Thyssen SM, Hill DJ, Arany E. Exposure of the pregnant rat to low protein diet causes impaired glucose homeostasis in the young adult offspring by different mechanisms in males and females. Exp Biol Med. 2009;234(12):1425–36.

    Article  CAS  Google Scholar 

  32. Shi H, Priya S, Senthil D. Sex differences in obesity-related glucose intolerance and insulin resistance. Glucose Toler. 2012:37–66.

    Google Scholar 

  33. Miyazaki Y, DeFronzo RA. Visceral fat dominant distribution in male type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type. Cardiovasc Diabetol. 2009;8:44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barker DJ, Forsen T, Eriksson JG, Osmond C. Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J Hypertens. 2002;20(10):1951–6.

    Article  CAS  PubMed  Google Scholar 

  35. Gluckman PD, Hanson MA. The consequences of being born small – An adaptive perspective. Hormone Res. 2006;65:5–14.

    Article  CAS  PubMed  Google Scholar 

  36. Tang C, Marchand K, Lam L, et al. Maternal taurine supplementation in rats partially prevents the adverse effects of early-life protein deprivation on β-cell function and insulin sensitivity. Reproduction. 2013;145(6):609–20.

    Article  CAS  PubMed  Google Scholar 

  37. Hales CN. Fetal and infant growth and impaired glucose tolerance in adulthood: the “thrifty phenotype” hypothesis revisited. Acta Paediatr Suppl. 1997;422(7):73–7.

    Article  CAS  PubMed  Google Scholar 

  38. Bustamante J, Lobo MV, Alonso FJ, et al. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab. 2001;281:E1275–85.

    CAS  PubMed  Google Scholar 

  39. Cherif H, Reusens B, Dahri S, Remacle C, Hoet JJ. Stimulatory effects of taurine on insulin secretion by fetal rat islets cultured in vitro. J Endocrinol. 1996;151(3):501–6.

    Article  CAS  PubMed  Google Scholar 

  40. Cherif H, Reusens B, Ahn MT, Hoet JJ, Remacle C. Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol. 1998;159(2):341–8.

    Article  CAS  PubMed  Google Scholar 

  41. Boujendar S, Reusens B, Merezak S, et al. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia. 2002;45(6):856–66.

    Article  CAS  PubMed  Google Scholar 

  42. Hogg J, Hill DJHV. The ontogeny of insulin-like growth factor (IGF) and IGF binding protein gene expression in the rat pancreas. Diabetes. 1994;36:465–71.

    Google Scholar 

  43. Hill DJ, Petrik J, Arany E, McDonald TJ, Delovitch TL. Insulin-like growth factors prevent cytokine-mediated cell death in isolated islets of Langerhans from pre-diabetic non-obese diabetic mice. J Endocrinol. 1999;161(1):153–65.

    Article  CAS  PubMed  Google Scholar 

  44. Bonner-Weir S, Orci L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes. 1982;31(10):883–9.

    Article  CAS  PubMed  Google Scholar 

  45. Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol Neonate. 1990;57(2):107–18.

    Article  CAS  PubMed  Google Scholar 

  46. Boujendar S, Arany E, Hill D, Remacle C, Reusens B. Taurine supplementation of a low protein diet fed to rat dams normalizes the vascularization of the fetal endocrine pancreas. J Nutr. 2003;133(9):2820–5.

    CAS  PubMed  Google Scholar 

  47. Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N. A role for taurine in mitochondrial function. J Biomed Sci. 2010;17(Suppl 1(Suppl 1)):S23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han J, Bae JH, Kim S-Y, et al. Taurine increases glucose sensitivity of UCP2-overexpressing beta-cells by ameliorating mitochondrial metabolism. Am J Physiol Endocrinol Metab. 2004;287:E1008–18.

    Article  CAS  PubMed  Google Scholar 

  49. Reusens B, Sparre T, Kalbe L, et al. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation. Diabetologia. 2008;51(5):836–45.

    Article  CAS  PubMed  Google Scholar 

  50. Merezak S, Reusens B, Renard A, et al. Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia. 2004;47(4):669–75.

    Article  CAS  PubMed  Google Scholar 

  51. Lee YY, Lee H-J, Lee S-S, et al. Taurine supplementation restored the changes in pancreatic islet mitochondria in the fetal protein-malnourished rat. Br J Nutr. 2011;106(08):1198–206.

    Article  CAS  PubMed  Google Scholar 

  52. Rabinowe SL, Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;31:1360–8.

    Google Scholar 

  53. De Luca G, Calpona PR, Caponetti A, et al. Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism. 2001;50(1):60–4.

    Article  PubMed  Google Scholar 

  54. Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FNBK. Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study. Diabetes Care. 2007;30:2652–4.

    Article  PubMed  Google Scholar 

  55. Elizarova EPNL. First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv Exp Med Biol. 1996;403:583–8.

    Article  CAS  PubMed  Google Scholar 

  56. Chauncey KB, Tenner TE Jr, Lombardini JB, Jones BG, Brooks ML, Warner RD, et al. The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol. 2003;526:91–6.

    Article  CAS  PubMed  Google Scholar 

  57. Hayes KCSJ. Taurine in metabolism. Annu Rev Nutr. 1981;1:401–25. (Annu Rev Nutr. 1981;1:401–25. Taurine in metabolism. Hayes KC, Sturman JA).

    Article  CAS  PubMed  Google Scholar 

  58. Haber CA, Lam TKT, Yu Z, et al. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab. 2003;285(4):E744–53.

    Article  CAS  PubMed  Google Scholar 

  59. Eppler B, Dawson R. Dietary taurine manipulations in aged male Fischer 344 rat tissue: taurine concentration, taurine biosynthesis, and oxidative markers. Biochem Pharmacol. 2001;62(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  60. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev. 2001;17(5):330–46.

    Article  CAS  PubMed  Google Scholar 

  62. Grimble RF. The effects of Sulphur amino-acids intake on immune function in humans. J Nutr. 2006;36(6):1160S–665S.

    Google Scholar 

  63. Marcinkiewicz J, Kontny E. Taurine and inflammatory diseases. Amino Acids. 2014;46(1):7–20.

    Google Scholar 

  64. Arany E, Strutt B, Romanus P, Remacle C, Reusens B, Hill DJ. Taurine supplement in early life altered islet morphology, decreased insulitis and delayed the onset of diabetes in non-obese diabetic mice. Diabetologia. 2004;47(10):1831–7.

    Article  CAS  PubMed  Google Scholar 

  65. Pozzilli P, Signore A, Williams AJ, Beales PE. NOD mouse colonies around the world – recent facts and figures. Immunol Today. 1993;14(5):193–6.

    Article  CAS  PubMed  Google Scholar 

  66. Marcinkiewicz J, Nowak B, Grabowska A, Bobek M, Petrovska L, Chain B. Regulation of murine dendritic cell functions in vitro by taurine chloramine, a major product of the neutrophil myeloperoxidase-halide system. Immunology. 1999;98(3):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ribeiro RA, Santos-Silva J, Vettorazzi JF, Borghi Cotrim B, Boschero AC, Magalhães CE. Taurine supplementation enhances insulin secretion without altering islet morphology in non-obese diabetic mice. Adv Exp Med Biol. 2015;803:353–70.

    Article  PubMed  Google Scholar 

  68. Lee YY, Lee H-JHK, Lee S-S, et al. Taurine supplementation restored the changes in pancreatic islet mitochondria in the fetal protein-malnourished rat. Br J Nutr. 2011;106(08):1198–206.

    Article  CAS  PubMed  Google Scholar 

  69. Kwak HC, Kim Y-M, Oh SJ, Kim SK. Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem Pharmacol. 2015;96(3):256–66.

    Article  CAS  PubMed  Google Scholar 

  70. Santos-Silva JC, Ribeiro RA, Vettorazzi JF, et al. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls α, β, and δ-cell masses in genetic obese mice. Amino Acids. 2015;47(8):1533–48.

    Google Scholar 

  71. Kim KS, Oh DH, Kim JY, et al. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med. 2012;44(11):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Batista TM, da Silva PMR, Amaral AG, Ribeiro RA, Boschero AC, Carneiro EM. Taurine supplementation restores insulin secretion and reduces ER stress markers in protein-malnourished mice. Adv Exp Med Biol. 2013;776:129–39.

    Article  CAS  PubMed  Google Scholar 

  73. Vettorazzi JF, Ribeiro RA, Santos-Silva JC, Borck PC, Batista TM, Nardelli TR, Boschero AC, Carneiro E. Taurine supplementation increases K channel protein content, improving Ca handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids. 2014;46(9):2123–36.

    Article  CAS  PubMed  Google Scholar 

  74. Maturo J, Kulakowski EC. Taurine binding to the purified insulin receptor. Biochem Pharmacol. 1988;37(19):3755–60.

    Article  CAS  PubMed  Google Scholar 

  75. Batista TM, Ribeiro RA, da Silva PMR, Camargo RL, Lollo PCB, Boschero AC, Carneiro EM. Taurine supplementation improves liver glucose control in normal protein and malnourished mice fed a high-fat diet. Mol Nutr Food Res. 2013;57:423–34.

    Article  CAS  PubMed  Google Scholar 

  76. Baek YY, Cho DH, Choe J, et al. Extracellular taurine induces angiogenesis by activating ERK-, Akt-, and FAK-dependent signal pathways. Eur J Pharmacol. 2012;674(2–3):188–99.

    Article  CAS  PubMed  Google Scholar 

  77. Das J, Sil PC. Taurine ameliorates alloxan-induced diabetic renal injury, oxidative stress-related signaling pathways and apoptosis in rats. Amino Acids. 2012;43(4):1509–23.

    Article  CAS  PubMed  Google Scholar 

  78. Ribeiro RA, Santos-Silva JC, Vettorazzi JF, et al. Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids. 2012;43(4):1791–801.

    Article  CAS  PubMed  Google Scholar 

  79. Kulakowski EC, Maturo J. Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol. 1984;33(18):2835–8.

    Article  CAS  PubMed  Google Scholar 

  80. Rosa FT, Freitas EC, Deminice R, Jordao AA, Marchini J. Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30.

    Article  CAS  PubMed  Google Scholar 

  81. Lee MY, Cheong SH, Chang KJ, Choi MJKS. Effect of the obesity index on plasma taurine levels in Korean female adolescents. Adv Exp Med Biol. 2003;526:285–90.

    Article  CAS  PubMed  Google Scholar 

  82. Tsuboyama-Kasaoka N, Shozawa C, Sano K, et al. Taurine (2-Aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology. 2006;147(7):3276–84.

    Article  CAS  PubMed  Google Scholar 

  83. Ribeiro RA, Santos-Silva JC, Vettorazzi JF, et al. Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids. 2012;43:1791–801.

    Article  CAS  PubMed  Google Scholar 

  84. You JS, Zhao X, Kim SH, Chang KJ. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats. Adv Exp Med Biol. 2013;776:105–11.

    Article  CAS  PubMed  Google Scholar 

  85. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–6.

    Article  CAS  PubMed  Google Scholar 

  86. Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr. 2000;71(1):54–8.

    CAS  PubMed  Google Scholar 

  87. Yokogoshi H, Oda H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. Amino Acids. 2002;23(4):433–9.

    Article  CAS  PubMed  Google Scholar 

  88. Ide T, Kushiro M, Takahashi Y, Shinohara K, Cha S. mRNA expression of enzymes involved in taurine biosynthesis in rat adipose tissues. Metabolism. 2002;51(9):1191–7.

    Article  CAS  PubMed  Google Scholar 

  89. Jeevanandam M, Ramias L, Schiller WR. Altered plasma free amino acid levels in obese traumatized man. Metabolism. 1991;40(4):385–90.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang M, Bi LF, Fang JH, et al. Beneficial effects of taurine on serum lipids in overweight or obese non-diabetic subjects. Amino Acids. 2004;26:267–71.

    CAS  PubMed  Google Scholar 

  91. Brøns C, Spohr C, Storgaard H, Dyerberg J. Vaag a. Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr. 2004;58:1239–47.

    Article  PubMed  Google Scholar 

  92. Xiao C, Giacca A, Lewis GF. Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia. 2008;51(1):139–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Arany MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Arany, E. (2017). Maternal Taurine Supplementation Prevents Misprogramming. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_23

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics