Advertisement

Impacts of Maternal High-Fat Diet on Stress-Related Behaviour and the Endocrine Response to Stress in Offspring

  • Sameera Abuaish
  • Patrick O. McGowanEmail author
Chapter
  • 1.1k Downloads
Part of the Nutrition and Health book series (NH)

Abstract

The early life environment plays a profound role in shaping behaviour throughout the lifespan by “programming” neural development. A major conduit for environmental factors, the hypothalamic-pituitary-adrenal (HPA) axis, is involved in maintaining endocrine homeostasis through neural regulatory feedback mechanisms. As such, the HPA axis links energy homeostasis with reactivity to psychosocial stress and emotional behaviour and is highly sensitive to maternal factors during prenatal development and early postnatal life. Maternal obesity is a major factor in programming a child to metabolic disorders. Recent studies have also revealed its influence in programming the mental health in offspring. Here, we review the effects of maternal high-fat diet on the mother and on stress-related neurodevelopment and behaviour in her offspring. We discuss rodent models using maternal high-fat diet exposure and their impacts on physiological, behavioural and epigenetic outcomes observed in offspring.

Keywords

Maternal obesity High-fat diet Gestation Lactation Developmental programming Hypothalamic-pituitary-adrenal axis Corticosterone Anxiety Stress Epigenetics DNA methylation 

Abbreviations

11β-HSD

11beta-hydroxysteroid dehydrogenase

α-MSH

α-Melanocyte-stimulating hormone

ACTH

Adrenocorticotropic hormone

ADHD

Attention deficit hyperactivity disorder

BDNF

Brain-derived neurotrophic factor

Cort

Corticosterone

CRH

Corticotropin-releasing hormone

DNMT1

DNA methyltransferase

DOHaD

Developmental Origins of Health and Disease

E

Embryonic day

GADD45b

Growth arrest and DNA damage-inducible beta

GR

Glucocorticoid receptor

HFD

High-fat diet

HPA

Hypothalamic-pituitary-adrenal

MR

Mineralocorticoid receptor

NFκB

Nuclear factor κB

PFC

Prefrontal cortex

PND

Postnatal day

POMC

Proopiomelanocortin

PVN

Paraventicular nucleus

References

  1. 1.
    Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81. doi: 10.1016/S0140-6736(14)60460-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fisher SC, Kim SY, Sharma AJ, Rochat R, Morrow B. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003–2009. Prev Med (Baltim). 2013;56(6):372–8. doi: 10.1016/j.ypmed.2013.02.015.CrossRefGoogle Scholar
  3. 3.
    Dearden L, Ozanne SE. Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol. 2015;39:3–16. doi: 10.1016/j.yfrne.2015.08.001.CrossRefPubMedGoogle Scholar
  4. 4.
    Rivera HM, Christiansen KJ, Sullivan EL. The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci. 2015;9:1–16. doi: 10.3389/fnins.2015.00194.CrossRefGoogle Scholar
  5. 5.
    Rosmond R, Björntorp P. Psychosocial and socio-economic factors in women and their relationship to obesity and regional body fat distribution. Int J Obes Relat Metab Disord. 1999;23:138–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Warne JP. Shaping the stress response: interplay of palatable food choices, glucocorticoids, insulin and abdominal obesity. Mol Cell Endocrinol. 2009;300(1–2):137–46. doi: 10.1016/j.mce.2008.09.036.CrossRefPubMedGoogle Scholar
  7. 7.
    Spencer SJ. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front Neurosci. 2013;7(June):109. doi: 10.3389/fnins.2013.00109.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rosmond R, Chagnon YC, Holm G, et al. A glucocorticoid receptor gene marker is associated with abdominal obesity, leptin, and dysregulation of the hypothalamic-pituitary-adrenal axis. Obes Res. 2000;8(3):211–8. doi: 10.1038/oby.2000.24.CrossRefPubMedGoogle Scholar
  9. 9.
    Dallman MF, Akana SF, Strack AM, et al. Chronic stress-induced effects of corticosterone on brain: direct and indirect. Ann N Y Acad Sci. 2004;1018:141–50. doi: 10.1196/annals.1296.017.CrossRefPubMedGoogle Scholar
  10. 10.
    Richardson HN, Zorrilla EP, Mandyam CD, Rivier CL. Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology. 2006;147(5):2506–17. doi: 10.1210/en.2005-1054.CrossRefPubMedGoogle Scholar
  11. 11.
    Sullivan EL, Grayson B, Takahashi D, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30(10):3826–30. doi: 10.1523/JNEUROSCI.5560-09.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Raygada M, Cho E, Hilakivi-Clarke L. High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings’ aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J Nutr. 1998;128(12):2505–11.PubMedGoogle Scholar
  13. 13.
    Sasaki A, de Vega WC, St-Cyr S, Pan P, McGowan PO. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience. 2013;240:1–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23454542.CrossRefPubMedGoogle Scholar
  14. 14.
    Sasaki A, de Vega W, Sivanathan S, St-Cyr S, McGowan PO. Maternal high-fat diet alters anxiety behavior and glucocorticoid signaling in adolescent offspring. Neuroscience. 2014;272:92–101. doi: 10.1016/j.neuroscience.2014.04.012.CrossRefPubMedGoogle Scholar
  15. 15.
    Wright T, Langley-Evans SC, Voigt J-P. The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring. Physiol Behav. 2011;103(2):164–72. doi: 10.1016/j.physbeh.2011.01.008.CrossRefPubMedGoogle Scholar
  16. 16.
    Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20(3):345–52. doi: 10.1016/j.reprotox.2005.04.005.CrossRefPubMedGoogle Scholar
  17. 17.
    Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol. 2013;34(1):27–46. doi: 10.1016/j.yfrne.2012.11.002.CrossRefPubMedGoogle Scholar
  18. 18.
    McGowan PO, Sasaki A, D’Alessio AC, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8. doi:nn.2270 [pii]\r10.1038/nn.2270.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vucetic Z, Carlin JL, Totoki K, Reyes TM. Epigenetic dysregulation of the dopamine system in diet-induced obesity. J Neurochem. 2012;120(6):891–8. doi: 10.1111/j.1471-4159.2012.07649.x.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Marco A, Kisliouk T, Tabachnik T, Meiri N, Weller A. Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not “reprogrammed” by regular chow diet in rats. FASEB J. 2014;28(9):4148–57. doi: 10.1096/fj.14-255620.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sivanathan S, Thavartnam K, Arif S, Elegino T, McGowan PO. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats. Behav Brain Res. 2015;286:265–70. doi: 10.1016/j.bbr.2015.02.036.CrossRefPubMedGoogle Scholar
  22. 22.
    Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes. 2013;37(3):382–9. doi: 10.1038/ijo.2012.48.CrossRefGoogle Scholar
  23. 23.
    Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010;23(2):270–99. doi: 10.1017/S0954422410000168.CrossRefPubMedGoogle Scholar
  24. 24.
    Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes. 2014;4(9):e135. doi: 10.1038/nutd.2014.30.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buettner R, Schölmerich J, Bollheimer LC. High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007;15(4):798–808. doi: 10.1038/oby.2007.608.CrossRefGoogle Scholar
  26. 26.
    Hryhorczuk C, Florea M, Rodaros D, et al. Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids. Neuropsychopharmacology. 2015;41(July):1–11. doi: 10.1038/npp.2015.207.Google Scholar
  27. 27.
    Bilbo SD, Tsang V. Enduring consequences of maternal obesity for brain inflammation and behavior of offspring. FASEB J. 2010;24(6):2104–15. doi: 10.1096/fj.09-144014.CrossRefPubMedGoogle Scholar
  28. 28.
    Vogt MC, Paeger L, Hess S, et al. Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding. Cell. 2014;156(3):495–509. doi:  10.1016/j.cell.2014.01.008.
  29. 29.
    Bellisario V, Panetta P, Balsevich G, et al. Maternal high-fat diet acts as a stressor increasing maternal glucocorticoids’ signaling to the fetus and disrupting maternal behavior and brain activation in C57BL/6J mice. Psychoneuroendocrinology. 2015;60:138–50. doi: 10.1016/j.psyneuen.2015.06.012.CrossRefPubMedGoogle Scholar
  30. 30.
    Rolls BJ, Rowe EA. Pregnancy and lactation in the obese rat: effects on maternal and pup weights. Physiol Behav. 1982;28(3):393–400. doi: 10.1016/0031-9384(82)90130-5.CrossRefPubMedGoogle Scholar
  31. 31.
    White CL, Pistell PJ, Purpera MN, et al. Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: contributions of maternal diet. Neurobiol Dis. 2009;35(1):3–13. doi: 10.1016/j.nbd.2009.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ressler IB, Grayson BE, Ulrich-Lai YM, Seeley RJ. Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model. Am J Physiol Endocrinol Metab. 2015;308(12):E1076–84. doi: 10.1152/ajpendo.00182.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rolls BJ, van Duijvenvoorde PM, Rowe EA. Effects of diet and obesity on body weight regulation during pregnancy and lactation in the rat. Physiol Behav. 1984;32(2):161–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6718543.CrossRefPubMedGoogle Scholar
  34. 34.
    Bayol SA, Farrington SJ, Stickland NC. A maternal “junk food” diet in pregnancy and lactation promotes an exacerbated taste for “junk food” and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98(4):843–51. doi: 10.1017/S0007114507812037.CrossRefPubMedGoogle Scholar
  35. 35.
    Rodriguez JS, Rodríguez-González GL, Reyes-Castro LA, et al. Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation. Int J Dev Neurosci. 2012;30(2):75–81. doi: 10.1016/j.ijdevneu.2011.12.012.CrossRefPubMedGoogle Scholar
  36. 36.
    Jensen Peña C, Monk C, Champagne FA. Epigenetic effects of prenatal stress on 11β-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One. 2012;7(6):e39791. doi: 10.1371/journal.pone.0039791.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Buonfiglio DC, Ramos-Lobo AM, Freitas VM, et al. Obesity impairs lactation performance in mice by inducing prolactin resistance. Sci Report. 2016;6:22421. doi: 10.1038/srep22421.CrossRefGoogle Scholar
  38. 38.
    Rolls BA, Gurr MI, van Duijvenvoorde PM, Rolls BJ, Rowe EA. Lactation in lean and obese rats: effect of cafeteria feeding and of dietary obesity on milk composition. Physiol Behav. 1986;38(2):185–90. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3797485.CrossRefPubMedGoogle Scholar
  39. 39.
    Sun B, Purcell RH, Terrillion CE, Yan J, Moran TH, Tamashiro KLK. Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes. 2012;61(11):2833–41. doi: 10.2337/db11-0957.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Purcell RH, Sun B, Pass LL, Power ML, Moran TH, Tamashiro KLK. Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol Behav. 2011;104(3):474–9. doi: 10.1016/j.physbeh.2011.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bertino M. Effect of high fat, protein supplemented diets on maternal behavior in rats. Physiol Behav. 1982;29(6):999–1005. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=med2&NEWS=N&AN=7163403.CrossRefPubMedGoogle Scholar
  42. 42.
    Woodside B. Prolactin and the hyperphagia of lactation. Physiol Behav. 2007;91(4):375–82. doi: 10.1016/j.physbeh.2007.04.015.CrossRefPubMedGoogle Scholar
  43. 43.
    Bellisario V, Berry A, Capoccia S, et al. Gender-dependent resiliency to stressful and metabolic challenges following prenatal exposure to high-fat diet in the p66(Shc−/−) mouse. Front Behav Neurosci. 2014;8:285. doi: 10.3389/fnbeh.2014.00285.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Terkel J, Bridges RS, Sawyer CH. Effects of transecting lateral neural connections of the medial preoptic area on maternal behavior in the rat: nest building, pup retrieval and prolactin secretion. Brain Res. 1979;169(2):369–80. doi: 10.1016/0006-8993(79)91037-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Fleming AS, Rosenblatt JS. Olfactory regulation of maternal behavior in rats. I. Effects of olfactory bulb removal in experienced and inexperienced lactating and cycling females. J Comp Physiol Psychol. 1974;86(2):221–32. doi: 10.1037/h0035937.CrossRefPubMedGoogle Scholar
  46. 46.
    Hernandez LL, Grayson BE, Yadav E, Seeley RJ, Horseman ND. High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways. PLoS One. 2012;7(3):3–10. doi: 10.1371/journal.pone.0032598.CrossRefGoogle Scholar
  47. 47.
    Perani CV, Neumann ID, Reber SO, Slattery DA. High-fat diet prevents adaptive peripartum-associated adrenal gland plasticity and anxiolysis. Sci Report. 2015;5:14821. doi: 10.1038/srep14821.CrossRefGoogle Scholar
  48. 48.
    Peleg-Raibstein D, Luca E, Wolfrum C. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behav Brain Res. 2012;233(2):398–404. doi: 10.1016/j.bbr.2012.05.027.CrossRefPubMedGoogle Scholar
  49. 49.
    Kang SS, Kurti A, Fair DA, Fryer JD. Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. J Neuroinflammation. 2014;11(1):156. doi: 10.1186/s12974-014-0156-9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Joels M, Karst H, DeRijk R, de Kloet ER. The coming out of the brain mineralocorticoid receptor. Trends Neurosci. 2008;31(1):1–7. doi: 10.1016/j.tins.2007.10.005.CrossRefPubMedGoogle Scholar
  51. 51.
    Lin C, Shao B, Huang H, Zhou Y, Lin Y. Maternal high fat diet programs stress-induced behavioral disorder in adult offspring. Physiol Behav. 2015;152:119–27. doi: 10.1016/j.physbeh.2015.09.023.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen H, Simar D, Morris MJ. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS One. 2009;4(7):e6259. doi: 10.1371/journal.pone.0006259.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jacobson-Pick S, Richter-Levin G. Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats. Behav Brain Res. 2010;214(2):268–76. doi: 10.1016/j.bbr.2010.05.036.CrossRefPubMedGoogle Scholar
  54. 54.
    Grissom NM, Herdt CT, Desilets J, Lidsky-Everson J, Reyes TM. Dissociable deficits of executive function caused by gestational adversity are linked to specific transcriptional changes in the prefrontal cortex. Neuropsychopharmacology. 2015;40:1353–1363. doi:  10.1038/npp.2014.313.
  55. 55.
    Tamashiro K, Terrillion C, Hyun J. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009;58(5):1116–25. doi: 10.2337/db08-1129.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Rat maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 2014;211(3):237.e1–237.e13. doi: 10.1016/j.ajog.2014.03.025.CrossRefGoogle Scholar
  57. 57.
    Sorrells SF, Munhoz CD, Manley NC, Yen S, Sapolsky RM. Glucocorticoids increase excitotoxic injury and inflammation in the hippocampus of adult male rats. Neuroendocrinology. 2014;100:129–40. doi: 10.1159/000367849.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpé S. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan into kynurenine, a phenomenon which is related to immune activation. Life Sci. 2002;71(16):1837–48. doi: 10.1016/S0024-3205(02)01853-2.CrossRefPubMedGoogle Scholar
  59. 59.
    Tozuka Y, Kumon M, Wada E, Onodera M, Mochizuki H, Wada K. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int. 2010;57(3):235–47. doi: 10.1016/j.neuint.2010.05.015.CrossRefPubMedGoogle Scholar
  60. 60.
    Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68(4):261–75. doi: 10.1016/j.neures.2010.08.007.CrossRefPubMedGoogle Scholar
  61. 61.
    Lupien SJ, Mcewen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434. doi: 10.1038/nrn2639.CrossRefPubMedGoogle Scholar
  62. 62.
    Roth TL, Zoladz PR, Sweatt JD, Diamond DM. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res. 2011;45(7):919–26. doi: 10.1016/j.jpsychires.2011.01.013.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Grissom NM, Lyde R, Christ L, et al. Obesity at conception programs the opioid system in the offspring brain. Neuropsychopharmacology. 2014;39(4):801–10. doi: 10.1038/npp.2013.193.CrossRefPubMedGoogle Scholar
  64. 64.
    Balsevich G, Baumann V, Uribe A, Chen A, Schmidt MV. Prenatal exposure to maternal obesity alters anxiety and stress-coping behaviors in aged mice. Neuroendocrinology. 2015; doi: 10.1159/000439087.
  65. 65.
    Oates M, Woodside B, Walker CD. Chronic leptin administration in developing rats reduces stress responsiveness partly through changes in maternal behavior. Horm Behav. 2000;37(4):366–76. doi: 10.1006/hbeh.2000.1578.CrossRefPubMedGoogle Scholar
  66. 66.
    Trottier G, Koski KG, Brun T, Toufexis DJ, Richard D, Walker CD. Increased fat intake during lactation modifies hypothalamic-pituitary-adrenal responsiveness in developing rat pups: a possible role for leptin. Endocrinology. 1998;139(9):3704–11. doi: 10.1210/endo.139.9.6208.CrossRefPubMedGoogle Scholar
  67. 67.
    Slieker LJ, Sloop KW, Surface PL, et al. Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J Biol Chem. 1996;271(10):5301–4. doi: 10.1074/jbc.271.10.5301.CrossRefPubMedGoogle Scholar
  68. 68.
    McGowan PO, Roth TL. Epigenetic pathways through which experiences become linked with biology. Dev Psychopathol. 2015;27:637–48. doi: 10.1017/s0954579415000206.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bird A. DNA methylation patterns and epigenetic memory DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21. doi: 10.1101/gad.947102.CrossRefPubMedGoogle Scholar
  70. 70.
    Waterland RA, Travisano M, Tahiliani KG, Rached MT, Mirza S. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes. 2008;32(9):1373–9. doi: 10.1038/ijo.2008.100.CrossRefGoogle Scholar
  71. 71.
    Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology. 2010;151(10):4756–64. doi: 10.1210/en.2010-0505.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Carlin JL, George R, Reyes TM. Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology. PLoS One. 2013;8(5):e63549. doi: 10.1371/journal.pone.0063549.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Weinstock M. Does prenatal stress impair coping and regulation of hypothalamic–pituitary-adrenal axis? Neurosci Biobehav Rev. 1997;21(1):1–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Gabory A, Ferry L, Fajardy I, et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS One. 2012;7(11):e47986. doi: 10.1371/journal.pone.0047986.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gallou-Kabani C, Gabory A, Tost J, et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One. 2010;5(12):e14398. doi: 10.1371/journal.pone.0014398.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences and Center for Environmental Epigenetics and DevelopmentUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada

Personalised recommendations