Skip to main content

Branching Measures and Nearly Acyclic NFAs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10316))

Abstract

To get a more comprehensive understanding of the branching complexity of nondeterministic finite automata (NFA), we introduce and study the string path width and depth path width measures. The string path width on a string w counts the number of all complete computations on w, and the depth path width on an integer \(\ell \) counts the number of complete computations on all strings of length \(\ell \). We give an algorithm to decide the finiteness of the depth path width of an NFA. Deciding finiteness of string path width can be reduced to the corresponding question on ambiguity.

An NFA is nearly acyclic if any computation can pass through at most one cycle. The class of nearly acyclic NFAs consists of exactly all NFAs with finite depth path width. Using this characterization we show that the finite depth path width of an m-state NFA over a k-letter alphabet is at most \((k+1)^{m-1}\) and that this bound is tight. The nearly acyclic NFAs recognize exactly the class of constant density regular languages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that this is not the same as the graph theory notion of tree width.

  2. 2.

    Here and in the title of the paper by “branching” we mean an informal notion of path expansion in computations. A specific technical notion called branching is considered by Goldstine et al. [7].

  3. 3.

    This is a conservative upper bound chosen to keep the argument simple. If A were to have m cycles, the length of the cycles naturally could not be m.

References

  1. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. Syst. Sci. 78(1), 198–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bubenzer, J.: Cycle-aware minimization of acyclic deterministic finite-state automata. Discrete Appl. Math. 163, 238–246 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T.-H., Ibarra, O.: On the finite valuedness problem for sequential machines. Theoret. Comput. Sci. 23, 95–101 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  6. Goldstine, J., Leung, H., Wotschke, D.: On the relation between ambiguity and nondeterminism in finite automata. Inform. Comput. 100, 261–270 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inform. Comput. 86(2), 261–270 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8(2), 193–234 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata - a survey. Inform. Comput. 209(3), 456–470 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput. 172(2), 202–217 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hromkovič, J., Schnitger, G.: Ambiguity and communication. Theory Comput. Syst. 48(3), 517–534 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keeler, C.: New metrics for finite automaton complexity and subregular language hierarchies. QSPACE. https://qspace.library.queensu.ca/handle/1974/15329

  13. Kintala, C.M.R., Pun, K.Y., Wotschke, D.: Concise representations of regular languages by degree and probabilistic finite automata. Math. Syst. Theory 26(4), 379–395 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamperti, G., Scandale, M., Zanella, M.: Determinization and minimization of finite acyclic automata by incremental techniques. Softw. Pract. Exp. 46(4), 513–549 (2016)

    Article  Google Scholar 

  15. Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Msiska, M., van Zijl, L.: Interpreting the subset construction using finite sublanguages. In: Proceedings of Prague Stringology Conference 2016, pp. 48–62 (2016)

    Google Scholar 

  17. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. J. Automata Lang. Comb. 17(2–4), 245–264 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Palioudakis, A., Salomaa, K., Akl, S.G.: Quantifying nondeterminism in finite automata. Ann. Univ. Bucharest Informatica 62(2), 89–100 (2015)

    Google Scholar 

  19. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to the succinctness of their representation. SIAM J. Comput. 18(6), 1263–1282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary alphabets. J. Automata Lang. Comb. 2(3), 177–186 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inf. Comput. 113(2), 331–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shallit, J.: Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  23. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret. Comput. Sci. 88(2), 325–349 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Acknowledgments

Research supported by NSERC grant OGP0147224. Full version of the work can be found in [12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Salomaa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 IFIP International Federation for Information Processing

About this paper

Cite this paper

Keeler, C., Salomaa, K. (2017). Branching Measures and Nearly Acyclic NFAs. In: Pighizzini, G., Câmpeanu, C. (eds) Descriptional Complexity of Formal Systems. DCFS 2017. Lecture Notes in Computer Science(), vol 10316. Springer, Cham. https://doi.org/10.1007/978-3-319-60252-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60252-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60251-6

  • Online ISBN: 978-3-319-60252-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics